Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2022 Mar:336:107159.
doi: 10.1016/j.jmr.2022.107159. Epub 2022 Feb 9.

Application of a 2D frequency encoding sectoral approach to hyperpolarized 129Xe MRI at low field

Affiliations

Application of a 2D frequency encoding sectoral approach to hyperpolarized 129Xe MRI at low field

Samuel Perron et al. J Magn Reson. 2022 Mar.

Abstract

Inhaled hyperpolarized 129Xe MRI is a non-invasive and radiation risk free lung imaging method, which can directly measure the business unit of the lung where gas exchange occurs: the alveoli and acinar ducts (lung function). Currently, three imaging approaches have been demonstrated to be useful for hyperpolarized 129Xe MR in lungs: Fast Gradient Recalled Echo (FGRE), Radial Projection Reconstruction (PR), and spiral/cones. Typically, non-Cartesian acquisitions such as PR and spiral/cones require specific data post-processing, such as interpolating, regridding, and density-weighting procedures for image reconstruction, which often leads to smoothing effects and resolution degradation. On the other hand, Cartesian methods such as FGRE are not short-echo time (TE) methods; they suffer from imaging gradient-induced diffusion-weighting of the k-space center, and employ a significant number of radio-frequency (RF) pulses. Due to the non-renewable magnetization of the hyperpolarized media, the use of a large number of RF pulses (FGRE/PR) required for full k-space coverage is a significant limitation, especially for low field (<0.5 T) hyperpolarized gas MRI. We demonstrate an ultra-fast, purely frequency-encoded, Cartesian pulse sequence called Frequency-Encoding Sectoral (FES), which takes advantage of the long T2* of hyperpolarized 129Xe gas at low field strength (0.074 T). In contrast to PR/FGRE, it uses a much smaller number of RF pulses, and consequently maximizes image Signal-to-Noise Ratio (SNR) while shortening acquisition time. Additionally, FES does not suffer from non-uniform T2* decay leading to image blurring; a common issue with interleaved spirals/cones. The Cartesian k-space coverage of the proposed FES method does not require specific k-space data post-processing, unlike PR/FGRE and spiral/cones methods. Proton scans were used to compare the FES sequence to both FGRE and Phase Encoding Sectoral, in terms of their SNR values and imaging efficiency estimates. Using FES, proton and hyperpolarized 129Xe images were acquired from a custom hollow acrylic phantom (0.04L) and two normal rats (129Xe only), utilizing both single-breath and multiple-breath schemes. For the 129Xe phantom images, the apparent diffusion coefficient, T1, and T2* relaxation maps were acquired and generated. Blurring due to the T2* decay and B0 field variation were simulated to estimate dependence of the image resolution on the duration of the data acquisition windows (i.e. sector length), and temperature-induced resonance frequency shift from the low field magnet hardware.

PubMed Disclaimer

Conflict of interest statement

Declaration of Competing Interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Publication types

LinkOut - more resources