Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2022 May:178:121560.
doi: 10.1016/j.techfore.2022.121560. Epub 2022 Feb 14.

Developing a mental health index using a machine learning approach: Assessing the impact of mobility and lockdown during the COVID-19 pandemic

Affiliations

Developing a mental health index using a machine learning approach: Assessing the impact of mobility and lockdown during the COVID-19 pandemic

Krishnadas Nanath et al. Technol Forecast Soc Change. 2022 May.

Abstract

Governments worldwide have implemented stringent restrictions to curtail the spread of the COVID-19 pandemic. Although beneficial to physical health, these preventive measures could have a profound detrimental effect on the mental health of the population. This study focuses on the impact of lockdowns and mobility restrictions on mental health during the COVID-19 pandemic. We first develop a novel mental health index based on the analysis of data from over three million global tweets using the Microsoft Azure machine learning approach. The computed mental health index scores are then regressed with the lockdown strictness index and Google mobility index using fixed-effects ordinary least squares (OLS) regression. The results reveal that the reduction in workplace mobility, reduction in retail and recreational mobility, and increase in residential mobility (confinement to the residence) have harmed mental health. However, restrictions on mobility to parks, grocery stores, and pharmacy outlets were found to have no significant impact. The proposed mental health index provides a path for theoretical and empirical mental health studies using social media.

Keywords: COVID-19 pandemic; Lockdown; Machine learning approach; Mental health index; Mobility; Twitter.

PubMed Disclaimer

Figures

Fig 1
Fig. 1
Study framework.
Fig 2
Fig. 2
Data extraction process.
Fig 3
Fig. 3
Box-and-Whisker plots of mobility variables.

Similar articles

Cited by

References

    1. Aloi A., Alonso B., Benavente J., Cordera R., Echániz E., González F., Perrucci L. Effects of the COVID-19 lockdown on urban mobility: empirical evidence from the city of Santander (Spain) Sustainability. 2020;12(9):3870.
    1. Arlinghaus A., Nachreiner F. Health effects of supplemental work from home in the European Union. Chronobiol. Int. 2014;31(10):1100–1107. - PubMed
    1. Armbruster, S., & Klotzbücher, V. (2020). Lost in lockdown? COVID-19, social distancing, and mental health in Germany (No. 2020-04). Diskussionsbeiträge.
    1. Arnold M.J., Reynolds K.E. Hedonic shopping motivations. J. Retail. 2003;79(2):77–95.
    1. Arora A., Chakraborty P., Bhatia M.P.S., Mittal P. Role of emotion in excessive use of twitter during COVID-19 imposed lockdown in India. J. Technol. Behav. Sci. 2020:1–8. - PMC - PubMed

LinkOut - more resources