Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1986 May 15;247(1):97-107.
doi: 10.1016/0003-9861(86)90538-2.

Characterization of O2 evolution by a wheat photosystem II reaction center complex isolated by a simplified method: disjunction of secondary acceptor quinone and enhanced Ca2+ demand

Characterization of O2 evolution by a wheat photosystem II reaction center complex isolated by a simplified method: disjunction of secondary acceptor quinone and enhanced Ca2+ demand

M Ikeuchi et al. Arch Biochem Biophys. .

Abstract

An O2-evolving photosystem II (PSII) reaction center complex was prepared from wheat by a simple method consisting of octylglucoside solubilization of Triton PSII particles followed by one-step sucrose density gradient centrifugation. The complex contained six species of proteins including the 33-kDa extrinsic protein with the same relative abundance as in the original PSII particles, one cytochrome b559, 4 Mn, and about 40 chlorophyll (Chl) per O2-evolving unit, and evolved O2 at a high rate of 1400-1700 mumol O2/mg Chl/h. O2 evolution by the complex was dependent on acceptor species, showing a hierarchy, ferricyanide greater than dichlorobenzoquinone greater than phenylbenzoquinone greater than dimethylbenzoquinone greater than duroquinone, and insensitive to DCMU, indicative of disjunction of the secondary quinone acceptor of PSII from the electron transport pathway. O2 evolution also showed a marked dependence on Cl- and Ca2+: about 10-fold acceleration by Cl- and an additional 2- to 3-fold by Ca2+. Comparison of the dissociation constants for Cl- and Ca2+ between the complex and NaCl-washed PSII particles revealed that octylglucoside treatment gives rise to a new Ca2+-sensitive site by removal of some unknown factor(s) other than the extrinsic 22- and 16-kDa proteins, while it preserves the Cl(-)-sensitive site as native as in NaCl-washed PSII particles. Analysis of the relationship between Cl- demand and Ca2+ demand revealed that Ca2+ absence noncompetitively inhibits the Cl(-)-supported O2 evolution, indicative of the independence of the binding site of these two factors.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources