Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2022 Jun 15:825:153995.
doi: 10.1016/j.scitotenv.2022.153995. Epub 2022 Feb 19.

Effect of the organic loading rate on the PHA-storing microbiome in sequencing batch reactors operated with uncoupled carbon and nitrogen feeding

Affiliations

Effect of the organic loading rate on the PHA-storing microbiome in sequencing batch reactors operated with uncoupled carbon and nitrogen feeding

Crognale Simona et al. Sci Total Environ. .

Abstract

Over the last years, in a search for sustainable and biodegradable alternatives to petrol-based plastics, biotechnological applications turned to the potentialities of mixed microbial cultures (MMC) for producing polyhydroxyalkanoates (PHAs). Under a feast and famine regime, an uncoupled carbon (C) and nitrogen (N)-feeding strategy may be adopted by dosing the C-source at the beginning of the feast and the N-source at the beginning of the famine in order to stimulate a PHA storage response and microbial growth. Even though this strategy has been already successfully applied for the PHA production, very few information is to date available regarding the MMC operating in these systems and the influence of Organic Loading Rate (OLR) on their selection and enrichment. To fill the gap, this study investigated the effect of the OLR on the selection of PHA-accumulating microorganisms in a sequencing batch reactor (SBR) operated with an uncoupled C and N feeding strategy. The SBR cycle length was set at 12 h and four OLRs values (4.25, 8.50, 12.75 and 18 gCOD L-1 d-1) were tested by changing the concentration of the feeding solution, made of a synthetic mixture of acetic (85% of the overall COD) and propionic (15%) acids. The PHA-storage yield increased by increasing the OLR (up to 0.69 COD/COD at 12.75 gCOD L-1 d-1) but significantly decreased (0.27 COD/COD) at 18 gCOD L-1 d-1 concomitantly with a longer feast phase and a lower PHA content in the biomass at the end of the feast phase. The selective pressure induced by the applied OLRs strongly influenced the microbiome composition revealing a high content of putative PHA-storing bacteria, such as Rhodobacter, Thauera and Paracoccus, in the SBR operated at OLRs 4.25, 8.50 and 12.75 g COD L-1 d-1 (up to 97.4% of total reads) and a low content (5.4%) in the SBR at 18 g COD L-1 d-1where the predominance of genus Nitrinicola was instead observed.

Keywords: Feast and famine regime; Mixed Microbial Culture (MMC); Polyhydroxyalkanoates (PHA); Uncoupled C/N feeding.

PubMed Disclaimer

Conflict of interest statement

Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

LinkOut - more resources