Commentary on "Predicting outcomes after intradetrusor onabotulinumtoxinA for nonneurogenic urgency incontinence in women"
- PMID: 35195303
- DOI: 10.1002/nau.24901
Commentary on "Predicting outcomes after intradetrusor onabotulinumtoxinA for nonneurogenic urgency incontinence in women"
Keywords: artificial intelligence; machine learning; onabotulinumtoxinA; overactive bladder; prognostication; urge urinary incontinence.
Comment on
-
Predicting outcomes after intradetrusor onabotulinumtoxina for non-neurogenic urgency incontinence in women.Neurourol Urodyn. 2022 Jan;41(1):432-447. doi: 10.1002/nau.24845. Epub 2021 Dec 2. Neurourol Urodyn. 2022. PMID: 34859485 Free PMC article.
References
REFERENCES
-
- Hendrickson WK, Xie G, Rahn DD, et al. Predicting outcomes after intradetrusor onabotulinumtoxina for non-neurogenic urgency incontinence in women. Neurourol Urodyn. 2021;41:432-447.
-
- Visco AG, Brubaker L, Richter HE, et al. Anticholinergic therapy vs. onabotulinumtoxinA for urgency urinary incontinence. N Engl J Med. 2012;367(19):1803-1813.
-
- Amundsen CL, Richter HE, Menefee SA, et al. OnabotulinumtoxinA vs sacral neuromodulation on refractory urgency urinary incontinence in women: a randomized clinical trial. JAMA. 2016;316(13):1366-1374.
-
- Emerson S, Kennedy R, O'Shea L, O'Brien J. Trends and applications of machine learning in quantitative finance. Paper presented at: 8th International Conference on Economics and Finance Research (ICEFR 2019). 2019.
-
- Rhee J, Im J. Meteorological drought forecasting for ungauged areas based on machine learning: using long-range climate forecast and remote sensing data. Agricult Forest Meterol. 2017;237:105-122.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources