Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2021 Dec 25;10(3):114-124.
doi: 10.4103/jrpp.jrpp_75_21. eCollection 2021 Jul-Sep.

Homocysteine-Lowering Interventions in Chronic Kidney Disease

Affiliations
Review

Homocysteine-Lowering Interventions in Chronic Kidney Disease

Shirinsadat Badri et al. J Res Pharm Pract. .

Abstract

The incidence of cardiovascular events and mortality is higher in patients with chronic kidney disease (CKD) compared to the general population. Homocysteine (Hcy) appears to be an independent risk factor for cardiovascular diseases in general populations and patients with CKD. Further, hyperhomocysteinemia can cause endothelial damage and increase the activity and production of coagulation factors, and its prevalence among patients with end-stage renal disease is approximately 85%-100%. Most treatments, which lower Hcy levels and have been considered in previous studies, include folic acid, B vitamins, omega-3 fatty acids, and N-acetylcysteine. However, the effect of therapies that can decrease Hcy levels and thus cardiovascular events in these patients is still unclear. The results are conflicting and require further investigation. To guide treatment decisions and improve patient outcomes, multiple databases were searched, including Web of Science, PubMed, and Medline to summarize the available evidence (i.e., clinical trial and meta-analyses) on Hcy-lowering interventions and cardiovascular events.

Keywords: Chronic kidney disease; homocysteine; hyperhomocysteinemia.

PubMed Disclaimer

Conflict of interest statement

There are no conflicts of interest.

Similar articles

Cited by

References

    1. Go AS, Chertow GM, Fan D, McCulloch CE, Hsu CY. Chronic kidney disease and the risks of death, cardiovascular events, and hospitalization. The New England journal of medicine. 2004;351(13):1296–305. - PubMed
    1. Qin X, Huo Y, Langman CB, Hou F, Chen Y, Matossian D, et al. Folic acid therapy and cardiovascular disease in ESRD or advanced chronic kidney disease: a meta-analysis. Clinical journal of the American Society of Nephrology: CJASN. 2011;6(3):482–8. - PMC - PubMed
    1. Weaver DJ, Mitsnefes M. Cardiovascular Disease in Children and Adolescents With Chronic Kidney Disease. Seminars in nephrology. 2018;38(6):559–69. - PubMed
    1. Gholipur-Shahraki T, Feizi A, Mortazavi M, Badri S. Effects of Carnitine on Nutritional Parameters in Patients with Chronic Kidney Disease: An Updated Systematic Review and Meta-Analysis. J Res Pharm Pract. 2018;7(2):57–68. - PMC - PubMed
    1. Badri S, Dashti-Khavidaki S, Lessan-Pezeshki M, Abdollahi M. A review of the potential benefits of pentoxifylline in diabetic and non-diabetic proteinuria. Journal of pharmacy & pharmaceutical sciences: a publication of the Canadian Society for Pharmaceutical Sciences, Societe canadienne des sciences pharmaceutiques. 2011;14(1):128–37. - PubMed