Lipopolysaccharide and flagellin of Azospirillum brasilense Sp7 influence callus morphogenesis and plant regeneration in wheat
- PMID: 35199239
- DOI: 10.1007/s11274-022-03247-y
Lipopolysaccharide and flagellin of Azospirillum brasilense Sp7 influence callus morphogenesis and plant regeneration in wheat
Abstract
In vitro somatic callus culturing is used widely in plant biotechnology, but its effectiveness depends largely on the donor plant genotype. Bacteria or components of their cells are rarely used to activate morphogenesis. In this work, inoculation of explants from immature wheat (Triticum aestivum L.) embryos with a suspension of living cells of the bacterium Azospirillum brasilense Sp7 resulted in callus death after 7 days of growth, in contrast to explant treatment with a suspension of heat-killed whole cells of Sp7. The experiments used two wheat lines, LRht-B1a and LRht-B1c, which differ in morphogenic activity. Growing calluses with the lipopolysaccharide of A. brasilense Sp7 increased the yield of regenerated plants 2- to 3.5-fold in both lines. This increase was through the activation of regenerant formation from morphogenic calluses. We have demonstrated for the first time the effects of bacterial flagellin on plant tissue culture. The polar-flagellum flagellin of A. brasilense Sp7 leveled the genotypic differences in the morphogenic ability of callus tissue. Specifically, it increased the yield of morphogenic calluses in the weakly morphogenic line LRht-B1a to the yield value in the highly morphogenic line LRht-B1c but lowered the yield of regenerants in the highly morphogenic line LRht-B1c to the yield value in the weakly morphogenic line LRht-B1a. Thus, bacterial lipopolysaccharides and flagellins can be used to regulate the formation of morphogenic calluses and regenerants in plant tissue culturing in vitro.
Keywords: Azospirillum brasilense; Bacterial lipopolysaccharide; Callus culture; Flagellin; Somatic embryogenesis; Triticum aestivum L..
© 2022. The Author(s), under exclusive licence to Springer Nature B.V.
Similar articles
-
Effect of bacterial lipopolysaccharides on morphogenetic activity in wheat somatic calluses.World J Microbiol Biotechnol. 2017 Dec 4;34(1):3. doi: 10.1007/s11274-017-2386-3. World J Microbiol Biotechnol. 2017. PMID: 29204736
-
Colonization and nitrogenase activity of Triticum aestivum (cv. Baccross and Mahdavi) to the dual inoculation with Azospirillum brasilense and Rhizobium meliloti plus 2,4-D.Pak J Biol Sci. 2008 Jun 15;11(12):1541-50. doi: 10.3923/pjbs.2008.1541.1550. Pak J Biol Sci. 2008. PMID: 18819640
-
Cloning, sequencing, and phenotypic analysis of laf1, encoding the flagellin of the lateral flagella of Azospirillum brasilense Sp7.J Bacteriol. 1995 Oct;177(19):5419-26. doi: 10.1128/jb.177.19.5419-5426.1995. J Bacteriol. 1995. PMID: 7559324 Free PMC article.
-
Flagellin of polar flagellum from Azospirillum brasilense Sp245: Isolation, structure, and biological activity.Int J Biol Macromol. 2020 Mar 15;147:1221-1227. doi: 10.1016/j.ijbiomac.2019.10.092. Epub 2019 Nov 15. Int J Biol Macromol. 2020. PMID: 31739060
-
Using Morphogenic Genes to Improve Recovery and Regeneration of Transgenic Plants.Plants (Basel). 2019 Feb 11;8(2):38. doi: 10.3390/plants8020038. Plants (Basel). 2019. PMID: 30754699 Free PMC article. Review.
Cited by
-
Biotization of in vitro oil palm (Elaeis guineensis Jacq.) and its plant-microbe interactions.Front Plant Sci. 2023 Apr 18;14:1150309. doi: 10.3389/fpls.2023.1150309. eCollection 2023. Front Plant Sci. 2023. PMID: 37143882 Free PMC article. Review.
References
-
- Belyakov AYe, Burygin GL, Arbatsky NP, Shashkov AS, Selivanov NYu, Matora LYu, Knirel YuA, Shchyogolev SYu, (2012) Identification of an O-linked repetitive glycan chain of the polar flagellum flagellin of Azospirillum brasilense Sp7. Carbohydr Res 361:127–132. https://doi.org/10.1016/j.carres.2012.08.019 - DOI
-
- Burygin GL, Kargapolova KY, Kryuchkova YV, Avdeeva ES, Gogoleva NE, Ponomaryova TS, Tkachenko OV (2019) Ochrobactrum cytisi IPA7.2 promotes growth of potato microplants and is resistant to abiotic stress. World J Microbiol Biotechnol 35:55. https://doi.org/10.1007/s11274-019-2633-x - DOI - PubMed
-
- Cassán F, Diaz-Zorita M (2016) Azospirillum sp. in current agriculture: from the laboratory to the field. Soil Biol Biochem 103:117–130. https://doi.org/10.1016/j.soilbio.2016.08.020 - DOI
-
- Chávez-Herrera E, Hernández-Esquivel AA, Castro-Mercado E et al (2018) Effect of Azospirillum brasilense Sp245 lipopolysaccharides on wheat plant development. J Plant Growth Regul 37:859–866. https://doi.org/10.1007/s00344-018-9782-2 - DOI
-
- Chinchilla D, Zipfel C, Robatzek S, Kemmerling B, Nürnberger T, Jones JD, Felix G, Boller T (2007) A flagellin-induced complex of the receptor FLS2 and BAK1 initiates plant defence. Nature 448:497–500. https://doi.org/10.1038/nature05999 - DOI - PubMed
MeSH terms
Substances
LinkOut - more resources
Full Text Sources