Conplastic strains for identification of retrograde effects of mitochondrial dna variation on cardiometabolic traits in the spontaneously hypertensive rat
- PMID: 35199537
- PMCID: PMC9054184
- DOI: 10.33549/physiolres.934740
Conplastic strains for identification of retrograde effects of mitochondrial dna variation on cardiometabolic traits in the spontaneously hypertensive rat
Abstract
Mitochondrial retrograde signaling is a pathway of communication from mitochondria to the nucleus. Recently, natural mitochondrial genome (mtDNA) polymorphisms (haplogroups) received increasing attention in the pathophysiology of human common diseases. However, retrograde effects of mtDNA variants on such traits are difficult to study in humans. The conplastic strains represent key animal models to elucidate regulatory roles of mtDNA haplogroups on defined nuclear genome background. To analyze the relationship between mtDNA variants and cardiometabolic traits, we derived a set of rat conplastic strains (SHR-mtBN, SHR-mtF344 and SHR-mtLEW), harboring all major mtDNA haplotypes present in common inbred strains on the nuclear background of the spontaneously hypertensive rat (SHR). The BN, F344 and LEW mtDNA differ from the SHR in multiple amino acid substitutions in protein coding genes and also in variants of tRNA and rRNA genes. Different mtDNA haplotypes were found to predispose to various sets of cardiometabolic phenotypes which provided evidence for significant retrograde effects of mtDNA in the SHR. In the future, these animals could be used to decipher individual biochemical components involved in the retrograde signaling.
Conflict of interest statement
There is no conflict of interest.
Figures



Similar articles
-
Effects of mtDNA in SHR-mtF344 versus SHR conplastic strains on reduced OXPHOS enzyme levels, insulin resistance, cardiac hypertrophy, and systolic dysfunction.Physiol Genomics. 2014 Sep 15;46(18):671-8. doi: 10.1152/physiolgenomics.00069.2014. Epub 2014 Jul 29. Physiol Genomics. 2014. PMID: 25073601
-
Nonsynonymous variants in mt-Nd2, mt-Nd4, and mt-Nd5 are linked to effects on oxidative phosphorylation and insulin sensitivity in rat conplastic strains.Physiol Genomics. 2012 May 1;44(9):487-94. doi: 10.1152/physiolgenomics.00156.2011. Epub 2012 Mar 13. Physiol Genomics. 2012. PMID: 22414913 Free PMC article.
-
Construction of two novel reciprocal conplastic rat strains and characterization of cardiac mitochondria.Am J Physiol Heart Circ Physiol. 2013 Jan 1;304(1):H22-32. doi: 10.1152/ajpheart.00534.2012. Epub 2012 Nov 2. Am J Physiol Heart Circ Physiol. 2013. PMID: 23125210 Free PMC article.
-
Recent advances in genetics of the spontaneously hypertensive rat.Curr Hypertens Rep. 2010 Feb;12(1):5-9. doi: 10.1007/s11906-009-0083-9. Curr Hypertens Rep. 2010. PMID: 20425152 Free PMC article. Review.
-
Mitochondrial DNA variation and the pathogenesis of osteoarthritis phenotypes.Nat Rev Rheumatol. 2018 Jun;14(6):327-340. doi: 10.1038/s41584-018-0001-0. Nat Rev Rheumatol. 2018. PMID: 29670212 Review.
Cited by
-
Mitochondrial influences on smooth muscle phenotype.Am J Physiol Cell Physiol. 2024 Feb 1;326(2):C442-C448. doi: 10.1152/ajpcell.00354.2023. Epub 2023 Nov 27. Am J Physiol Cell Physiol. 2024. PMID: 38009196 Free PMC article. Review.
-
Haplotype variability in mitochondrial rRNA predisposes to metabolic syndrome.Commun Biol. 2024 Sep 11;7(1):1116. doi: 10.1038/s42003-024-06819-w. Commun Biol. 2024. PMID: 39261587 Free PMC article.
-
Preclinical models of mitochondrial dysfunction: mtDNA and nuclear-encoded regulators in diverse pathologies.Front Aging. 2025 Jun 23;6:1585508. doi: 10.3389/fragi.2025.1585508. eCollection 2025. Front Aging. 2025. PMID: 40625678 Free PMC article. Review.
-
Multi-tissue metabolomics reveal mtDNA- and diet-specific metabolite profiles in a mouse model of cardiometabolic disease.Redox Biol. 2025 Apr;81:103541. doi: 10.1016/j.redox.2025.103541. Epub 2025 Feb 14. Redox Biol. 2025. PMID: 39983345 Free PMC article.
-
Heat Stroke Induces Pyroptosis in Spermatogonia via the cGAS-STING Signaling Pathway.Physiol Res. 2024 Mar 11;73(1):117-125. doi: 10.33549/physiolres.935163. Physiol Res. 2024. PMID: 38466010 Free PMC article.
References
-
- AITMAN TJ, GLAZIER AM, WALLACE CA, COOPER LD, NORSWORTHY PJ, WAHID FN, AL-MAJALI KM, TREMBLING PM, MANN CJ, SHOULDERS CC, GRAF D, ST LEZIN E, KURTZ TW, KREN V, PRAVENEC M, IBRAHIMI A, ABUMRAD NA, STANTON LW, SCOTT J. Identification of Cd36 (Fat) as an insulin-resistance gene causing defective fatty acid and glucose metabolism in hypertensive rats. Nat Genet. 1999;21:76–83. doi: 10.1038/5013. - DOI - PubMed
-
- AW WC, TOWARNICKI SG, MELVIN RG, YOUNGSON NA, GARVIN MR, HU Y, NIELSEN S, THOMAS T, PICKFORD R, BUSTAMANTE S, VILA-SANJURJO A, SMYTH GK, BALLARD JWO. Genotype to phenotype: Diet-by-mitochondrial DNA haplotype interactions drive metabolic flexibility and organismal fitness. PLoS Genet. 2018;14:e1007735. doi: 10.1371/journal.pgen.1007735. - DOI - PMC - PubMed
-
- CYPROVÁ M, BENÁK D, HLAVÁČKOVÁ M, ŠILHAVÝ J, PRAVENEC M, KOLÁŘ F, NECKÁŘ J. Cardiac ischemic tolerance of spontaneously hypertensive rats with replaced mitochondrial DNA: Effect of adaptation to chronic hypoxia. J Mol Cell Cardiol. 2018;120(Suppl 1):5. doi: 10.1016/j.yjmcc.2018.05.027. - DOI
-
- DUNHAM-SNARY KJ, SANDEL MW, SAMMY MJ, WESTBROOK DG, XIAO R, MCMONIGLE RJ, RATCLIFFE WF, PENN A, YOUNG ME, BALLINGER SW. Mitochondrial - nuclear genetic interaction modulates whole body metabolism, adiposity and gene expression in vivo. EBioMedicine. 2018;36:316–328. doi: 10.1016/j.ebiom.2018.08.036. - DOI - PMC - PubMed