Upfront DPYD Genotyping and Toxicity Associated with Fluoropyrimidine-Based Concurrent Chemoradiotherapy for Oropharyngeal Carcinomas: A Work in Progress
- PMID: 35200545
- PMCID: PMC8870563
- DOI: 10.3390/curroncol29020045
Upfront DPYD Genotyping and Toxicity Associated with Fluoropyrimidine-Based Concurrent Chemoradiotherapy for Oropharyngeal Carcinomas: A Work in Progress
Abstract
Background: 5-FU-based chemoradiotherapy (CRT) could be associated with severe treatment-related toxicities in patients harboring at-risk DPYD polymorphisms. Methods: The studied population included consecutive patients with locoregionally advanced oropharyngeal carcinoma treated with carboplatin and 5-FU-based CRT one year before and after the implementation of upfront DPYD*2A genotyping. We aimed to determine the effect of DPYD genotyping on grade ≥3 toxicities. Results: 181 patients were analyzed (87 patients before and 94 patients following DPYD*2A screening). Of the patients, 91% (n = 86) were prospectively genotyped for the DPYD*2A allele. Of those screened, 2% (n = 2/87) demonstrated a heterozygous DPYD*2A mutation. Extended genotyping of DPYD*2A-negative patients later allowed for the retrospective identification of six additional patients with alternative DPYD variants (two c.2846A>T and four c.1236G>A mutations). Grade ≥3 toxicities occurred in 71% of the patients before DPYD*2A screening versus 62% following upfront genotyping (p = 0.18). When retrospectively analyzing additional non-DPYD*2A variants, the relative risks for mucositis (RR 2.36 [1.39-2.13], p = 0.0063), dysphagia (RR 2.89 [1.20-5.11], p = 0.019), and aspiration pneumonia (RR 13 [2.42-61.5)], p = 0.00065) were all significantly increased. Conclusion: The DPYD*2A, c.2846A>T, and c.1236G>A polymorphisms are associated with an increased risk of grade ≥3 toxicity to 5-FU. Upfront DPYD genotyping can identify patients in whom 5-FU-related toxicity should be avoided.
Keywords: DPYD; chemoradiotherapy; fluoropyrimidine; genotyping; head and neck cancer; oropharyngeal cancer; pharmacovigilance.
Conflict of interest statement
The authors declare no conflict of interest.
Figures
References
-
- Macdonald J.S., Smalley S.R., Benedetti J., Hundahl S.A., Estes N.C., Stemmermann G.N., Haller D.G., Ajani J.A., Gunderson L.L., Jessup J.M., et al. Chemoradiotherapy after Surgery Compared with Surgery Alone for Adenocarcinoma of the Stomach or Gastroesophageal Junction. N. Engl. J. Med. 2001;345:725–730. doi: 10.1056/NEJMoa010187. - DOI - PubMed
-
- James R.D., Glynne-Jones R., Meadows H.M., Cunningham D., Myint A.S., Saunders M.P., Maughan T., McDonald A., Essapen S., Leslie M., et al. Mitomycin or cisplatin chemoradiation with or without maintenance chemotherapy for treatment of squamous-cell carcinoma of the anus (ACT II): A randomised, phase 3, open-label, 2×2 factorial trial. Lancet Oncol. 2013;14:516–524. doi: 10.1016/S1470-2045(13)70086-X. - DOI - PubMed
-
- NCI Common Terminology Criteria for Adverse Events (CTCAE) Version 5.0. [(accessed on 5 November 2021)];2017 Available online: https://ctep.cancer.gov/protocoldevelopment/electronic_applications/docs....
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Research Materials
