Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2022 Aug;32(8):5424-5435.
doi: 10.1007/s00330-022-08629-2. Epub 2022 Feb 24.

State-of-the-art myocardial strain by CMR feature tracking: clinical applications and future perspectives

Affiliations
Review

State-of-the-art myocardial strain by CMR feature tracking: clinical applications and future perspectives

Jing Xu et al. Eur Radiol. 2022 Aug.

Abstract

Based on conventional cine sequences of cardiac magnetic resonance (CMR), feature tracking (FT) is an emerging tissue tracking technique that evaluates myocardial motion and deformation quantitatively by strain, strain rate, torsion, and dyssynchrony. It has been widely accepted in modern literature that strain analysis can offer incremental information in addition to classic global and segmental functional analysis. Furthermore, CMR-FT facilitates measurement of all cardiac chambers, including the relatively thin-walled atria and the right ventricle, which has been a difficult measurement to obtain with the reference standard technique of myocardial tagging. CMR-FT objectively quantifies cardiovascular impairment and characterizes myocardial function in a novel way through direct assessment of myocardial fiber deformation. The purpose of this review is to discuss the current status of clinical applications of myocardial strain by CMR-FT in a variety of cardiovascular diseases. KEY POINTS: • CMR-FT is of great value for differential diagnosis and provides incremental value for evaluating the progression and severity of diseases. • CMR-FT guides the early diagnosis of various cardiovascular diseases and provides the possibility for the early detection of myocardial impairment and additional information regarding subclinical cardiac abnormalities. • Direct assessment of myocardial fiber deformation using CMR-FT has the potential to provide prognostic information incremental to common clinical and CMR risk factors.

Keywords: Cardiovascular diseases; Diagnosis; Magnetic resonance imaging; Prognosis; Strain.

PubMed Disclaimer

Similar articles

Cited by

References

    1. von Knobelsdorff-Brenkenhoff F, Schulz-Menger J (2016) Role of cardiovascular magnetic resonance in the guidelines of the European Society of Cardiology. J Cardiovasc Magn Reson 18:6 - DOI
    1. von Knobelsdorff-Brenkenhoff F, Pilz G, Schulz-Menger J (2017) Representation of cardiovascular magnetic resonance in the AHA / ACC guidelines. J Cardiovasc Magn Reson 19:70 - DOI
    1. Amzulescu MS, De Craene M, Langet H et al (2019) Myocardial strain imaging: review of general principles, validation, and sources of discrepancies. Eur Heart J Cardiovasc Imaging 20:605–619 - PubMed - PMC - DOI
    1. Zerhouni EA, Parish DM, Rogers WJ, Yang A, Shapiro EP (1988) Human heart: tagging with MR imaging--a method for noninvasive assessment of myocardial motion. Radiology 169:59–63 - PubMed - DOI
    1. Aletras AH, Ding S, Balaban RS, Wen H (1999) DENSE: displacement encoding with stimulated echoes in cardiac functional MRI. J Magn Reson 137:247–252 - PubMed - PMC - DOI

LinkOut - more resources