Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2022 Jan 25;10(2):261.
doi: 10.3390/biomedicines10020261.

Targeting NF-κB Signaling in Cancer Stem Cells: A Narrative Review

Affiliations
Review

Targeting NF-κB Signaling in Cancer Stem Cells: A Narrative Review

Barbara Kaltschmidt et al. Biomedicines. .

Abstract

Among the cell populations existing within a tumor, cancer stem cells are responsible for metastasis formation and chemotherapeutic resistance. In the present review, we focus on the transcription factor NF-κB, which is present in every cell type including cancer stem cells. NF-κB is involved in pro-tumor inflammation by its target gene interleukin 1 (IL1) and can be activated by a feed-forward loop in an IL1-dependent manner. Here, we summarize current strategies targeting NF-κB by chemicals and biologicals within an integrated cancer therapy. Specifically, we start with a tyrosine kinase inhibitor targeting epidermal growth factor (EGF)-receptor-mediated phosphorylation. Furthermore, we summarize current strategies of multiple myeloma treatment involving lenalidomide, bortezomib, and dexamethasone as potential NF-κB inhibitors. Finally, we discuss programmed death-ligand 1 (PD-L1) as an NF-κB target gene and its role in checkpoint therapy. We conclude, that NF-κB inhibition by specific inhibitors of IκB kinase was of no clinical use but inhibition of upstream and downstream targets with drugs or biologicals might be a fruitful way to treat cancer stem cells.

Keywords: EGF; NF-κB; PD-L1; bortezomib; cancer stem cells; dexamethasone; lenalidomide.

PubMed Disclaimer

Conflict of interest statement

The authors declare no conflict of interest.

Figures

Figure 1
Figure 1
CSC- as well as incorporated cancer cell characteristics. Features and benefits for survival/maintenance of CSCs and (partially) differentiated cancer cells, whereas magenta characteristics exclusively describe cells possessing the stemness character.
Figure 2
Figure 2
NF-κB signaling involves at least two different pathways: An alternative pathway with upstream kinase NIK and a dimer of IKK-1. In this pathway, the precursor of p52 acts as an inhibitory subunit. The classical pathway involves a dimer of upstream kinases (TAK1, TAB), which could activate a trimeric signalosome composed of NEMO (docking component), IKK-1, and IKK-2. Activation of signalosome leads to phosphorylation of IκB-α at serine 32 and 36, followed by ubiquitination and subsequent degradation within the proteasome. For further details, see the text.
Figure 3
Figure 3
Overview of biologicals (anti-IL1β, anti-PDL-1) and small molecules such as RTK-inhibitors (RKI) for targeting NF-κB-signaling in cancer and CSCs.
Figure 4
Figure 4
Anti-inflammatory cues impinging on NF-κB in CSCs. On the left, a CSC with NF-κB-signaling is depicted. NF-κB could be activated by cancer-produced IL-1. Inhibition of NF-κB-activation could be mediated by several members of the IκB family, by the de-ubiquitination of signaling molecules (for details see text). Furthermore, non-coding RNAs such as microRNA(miR) 146 or long non-coding RNAs NKILA could inhibit NF-κB-activation by targeting activating proteins. Inhibition of transactivation could be driven by IEX-1 or by COMMD1-mediated ubiquitination of RELA. On the right side, tumor-infiltrating immune cells are shown. Naïve CD4+ cells can differentiate into induced regulatory T cells (iTregs). These express ectoenzymes such as CD39 and CD73 responsible for the hydrolysis of ATP to adenosine, in turn, inhibiting NF-κB-activation in CSCs. iTREGs could fancy cREL for expression of FOXP3 lineage transcription factor. A pro-tumor function of iTREGs could be the repression of CD8 cytotoxic lymphocytes (CTL).

Similar articles

Cited by

References

    1. Kaltschmidt C., Greiner J., Kaltschmidt B. The Transcription Factor NF-κB in Stem Cells and Development. Cells. 2021;10:2042. doi: 10.3390/cells10082042. - DOI - PMC - PubMed
    1. Kaltschmidt C., Banz-Jansen C., Benhidjeb T., Beshay M., Förster C., Greiner J., Hamelmann E., Jorch N., Mertzlufft F., Pfitzenmaier J., et al. A Role for NF-κB in Organ Specific Cancer and Cancer Stem Cells. Cancers. 2019;11:655. doi: 10.3390/cancers11050655. - DOI - PMC - PubMed
    1. Bray F., Ferlay J. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2018;68:394–424. doi: 10.3322/caac.21492. - DOI - PubMed
    1. Reya T., Morrison S.J., Clarke M.F., Weissman I.L. Stem cells, cancer, and cancer stem cells. Nature. 2001;414:105–111. doi: 10.1038/35102167. - DOI - PubMed
    1. Wyckoff J., Wang W., Lin E.Y., Wang Y., Pixley F., Stanley E.R., Graf T., Pollard J.W., Segall J., Condeelis J. A Paracrine Loop between Tumor Cells and Macrophages Is Required for Tumor Cell Migration in Mammary Tumors. Cancer Res. 2004;64:7022–7029. doi: 10.1158/0008-5472.CAN-04-1449. - DOI - PubMed