Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2022 Jan 26;8(2):117.
doi: 10.3390/jof8020117.

Antifungal and Antiaflatoxinogenic Effects of Cymbopogon citratus, Cymbopogon nardus, and Cymbopogon schoenanthus Essential Oils Alone and in Combination

Affiliations

Antifungal and Antiaflatoxinogenic Effects of Cymbopogon citratus, Cymbopogon nardus, and Cymbopogon schoenanthus Essential Oils Alone and in Combination

Ignace Sawadogo et al. J Fungi (Basel). .

Abstract

The antifungal and antiaflatoxinogenic activities of the essential oils (EOs) from the leaves of Cymbopogon schoenanthus, Cymbopogon citratus, Cymbopogon nardus, and their pair combinations were investigated. Antifungal susceptibility and the efficacy of paired combinations of EOs were assessed using agar microdilution and checkerboard methods, respectively. Identification and quantification of chemical components of the EOs were carried out by gas chromatography-mass spectrometry and gas chromatography-flame ionization detector (GC-MS and GC-FID), respectively. Aflatoxins were separated and identified by High-Performance Liquid Chromatography (HPLC) and then quantified by spectrofluorescence. The EO of C. nardus exhibited the highest inhibitory activity against Aspergillus flavus and Aspergillus parasiticus. The combination of C. citratus and C. nardus and that of C. nardus and C. schoenanthus exhibited a synergistic effect against Aspergillus flavus and Aspergillus, respectively. Both C. citratus and C. schoenanthus EOs totally inhibited the synthesis of aflatoxin B1 at 1 µL/mL. C. citratus blocked the production of aflatoxins B2 and G2 at 0.5 µL/mL. Both C. citratus and C. schoenanthus totally hampered the production of the aflatoxin G1 at 0.75 µL/mL. The combination of C. citratus and C. schoenanthus completely inhibited the production of the four aflatoxins. The study shows that the combinations can be used to improve their antifungal and antiaflatoxinogenic activities.

Keywords: Aspergillus flavus; Aspergillus parasiticus; antiaflatoxinogenic effect; antifungal; combination; essential oils.

PubMed Disclaimer

Conflict of interest statement

The authors declare no conflict of interest.

References

    1. De Ruyck K., De Boevre M., Huybrechts I., De Saeger S. Dietary mycotoxins, co-exposure, and carcinogenesis in humans: Short review. Mutat. Res. Mutat. Res. 2015;766:32–41. doi: 10.1016/j.mrrev.2015.07.003. - DOI - PubMed
    1. Ozcakmak S., Gul O. Inhibition kinetics of Penicillium verrucosum using different essential oils and application of predictive inactivation models. Int. J. Food Prop. 2017;20:S684–S692. doi: 10.1080/10942912.2017.1308953. - DOI
    1. Liu Y., Yamdeu J.H.G., Gong Y.Y., Orfila C. A review of postharvest approaches to reduce fungal and mycotoxin contamination of foods. Compr. Rev. Food Sci. Food Saf. 2020;19:1521–1560. doi: 10.1111/1541-4337.12562. - DOI - PubMed
    1. Kumar R., Mishra A.K., Dubey N., Tripathi Y. Evaluation of Chenopodium ambrosioides oil as a potential source of antifungal, antiaflatoxigenic and antioxidant activity. Int. J. Food Microbiol. 2007;115:159–164. doi: 10.1016/j.ijfoodmicro.2006.10.017. - DOI - PubMed
    1. Benkerroum N. Aflatoxins: Producing-Molds, Structure, Health Issues and Incidence in Southeast Asian and Sub-Saharan African Countries. Int. J. Environ. Res. Public Health. 2020;17:1215. doi: 10.3390/ijerph17041215. - DOI - PMC - PubMed

LinkOut - more resources