Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2022 Feb 2;10(2):345.
doi: 10.3390/microorganisms10020345.

Susceptibility of Pets to SARS-CoV-2 Infection: Lessons from a Seroepidemiologic Survey of Cats and Dogs in Portugal

Affiliations

Susceptibility of Pets to SARS-CoV-2 Infection: Lessons from a Seroepidemiologic Survey of Cats and Dogs in Portugal

Ricardo Barroso et al. Microorganisms. .

Abstract

Betacoronavirus (β-CoV) are positive single-stranded RNA viruses known to infect mammals. In 2019, a novel zoonotic β-CoV emerged, the severe acute respiratory syndrome (SARS)-CoV-2. Although the most frequent SARS-CoV-2 transmission route is within humans, spillover from humans to domestic and wild animals has been reported, including cats (Felis catus), dogs (Canis lupus familiaris), and minks (Neovision vision). In order to understand the potential role of domestic animals in SARS-CoV-2 global transmission, as well their susceptibility to infection, a seroepidemiologic survey of cats and dogs in Portugal was conducted. Antibodies against SARS-CoV-2 were detected in 15/69 (21.74%) cats and 7/148 (4.73%) dogs. Of the SARS-CoV-2 seropositive animals, 11/22 (50.00%) were possibly infected by human-to-animal transmission, and 5/15 (33.33%) cats were probably infected by cat-to-cat transmission. Moreover, one dog tested positive for SARS-CoV-2 RNA. Data suggest that cats and dogs are susceptible to SARS-CoV-2 infection in natural conditions. Hence, a one-health approach is crucial in the SARS-CoV-2 pandemic to understand the risk factors beyond infection in a human-animal environment interface.

Keywords: SARS-CoV-2; cats; coronavirus disease 2019 (COVID-19); diagnosis; dogs; epidemiology; one-health; zoonosis.

PubMed Disclaimer

Conflict of interest statement

The authors declare no conflict of interest.

Figures

Figure A1
Figure A1
Signalment of (a) cats and (b) dogs from the SARS-CoV-2 seroepidemiologic study of pets in Portugal.
Figure 1
Figure 1
Geographic distribution of cat and dog samples, collected across (a) Portugal and in the regions of (b) Braga (Braga, Vila Nova de Famalicão, Guimarães, Vizela, Fafe, and Celorico de Basto as well as (c) Porto (Porto, Vila do Conde, Trofa, Santo Tirso, Gondomar, Felgueiras, and Penafiel).
Figure 2
Figure 2
Timeline of the SARS-CoV-2 infection in an asymptomatic dog in a COVID-19-positive household. From the diagnosis of COVID-19 in the dog owners (22 January 2021) to the first and second positive RT-qPCR test of the dog on 29 January 2021 and 4 February 2021, respectively, and the positive ELISA test on 14 February 2021, 16 days after the first positive RT-qPCR test. The green color means positive serological or molecular result and the red color means a negative serological or molecular result. The date corresponds to the day of the blood or swab sampling from the dog.
Figure 3
Figure 3
Clustal W analysis of partial Spike genome sequence retrieved in dog (EPI_ISL_122054) compared to Alpha and Wuhan strain.
Figure 4
Figure 4
Possible transmission cycle of SARS-CoV-2 in different animal hosts. Created with BioRender.com.

References

    1. Zhu N., Zhang D., Wang W., Li X., Yang B., Song J., Zhao X., Huang B., Shi W., Lu R. A novel coronavirus from patients with pneumonia in China, 2019. N. Engl. J. Med. 2020 doi: 10.1056/NEJMoa2001017. - DOI - PMC - PubMed
    1. Gorbalenya A.E., Baker S., Baric R., de Groot R.J., Drosten C., Gulyaeva A.A., Haagmans B.L., Lauber C., Leontovich A.M., Neuman B.W., et al. The species Severe acute respiratory syndrome-related coronavirus: Classifying 2019-nCoV and naming it SARS-CoV-2. Nat. Microbiol. 2020;5:536. - PMC - PubMed
    1. Zhou P., Yang X.-L., Wang X.-G., Hu B., Zhang L., Zhang W., Si H.-R., Zhu Y., Li B., Huang C.-L. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature. 2020;579:270–273. doi: 10.1038/s41586-020-2012-7. - DOI - PMC - PubMed
    1. Xiao K., Zhai J., Feng Y., Zhou N., Zhang X., Zou J.-J., Li N., Guo Y., Li X., Shen X. Isolation and characterization of 2019-nCoV-like coronavirus from Malayan pangolins. bioRxiv. 2020 - PubMed
    1. Zhang T., Wu Q., Zhang Z. Probable pangolin origin of SARS-CoV-2 associated with the COVID-19 outbreak. Curr. Biol. 2020;30:1346–1351.e1342. doi: 10.1016/j.cub.2020.03.022. - DOI - PMC - PubMed

LinkOut - more resources