Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2022 Feb 8:12:841276.
doi: 10.3389/fonc.2022.841276. eCollection 2022.

Combination of Venetoclax and Midostaurin Efficiently Suppressed Relapsed t(8;21)Acute Myeloid Leukemia With Mutant KIT After Failure of Venetoclax Plus Azacitidine Treatment

Affiliations

Combination of Venetoclax and Midostaurin Efficiently Suppressed Relapsed t(8;21)Acute Myeloid Leukemia With Mutant KIT After Failure of Venetoclax Plus Azacitidine Treatment

Zheng Li et al. Front Oncol. .

Abstract

Acute myeloid leukemia (AML) with t(8;21) is categorized as favorable-risk AML, but KIT mutations show a significantly poor prognostic impact in such patients. Persistent vulnerability to relapse is a major challenge in the treatment of this subtype of patients. Venetoclax is a BCL-2 selective inhibitor. The venetoclax+HMA strategy is also a notable salvage regimen that achieves good clinical outcomes in the treatment of relapsed or refractory (R/R) AML. However, in our clinical practice, we found that disease progressed rapidly even after venetoclax+azacitidine (AZA) therapy in two relapsed t(8;21) AML patients with KIT mutations. We report for the first time the therapeutic potential of venetoclax+midostaurin as a new combination therapy for relapsed t(8;21) AMLs with KIT mutations showing resistance to venetoclax+AZA therapy. Our ex vivo study also showed that midostaurin alone could inhibit proliferation and induce apoptosis of Kasumi-1 cells (e.g. Midostaurin induced G2 phase cell arrest, down-regulated p-KIT and BCL-2, while Bax protein levels were up-regulated) and observed a synergistic anti effect when the two drugs were combined. Our study shows that the venetoclax+midostaurin regimen may be a promising treatment option for R/R t(8;21) AML with KIT mutations.

Keywords: KIT mutation; azacitidine; midostaurin; relapsed acute myeloid leukemia; t(8;21); targeted therapy; venetoclax.

PubMed Disclaimer

Conflict of interest statement

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Figures

Figure 1
Figure 1
The treatment process of case 1 (A) and case 2 (B) and the hematological toxicity of VEN+MIDO therapy (C). CR, complete remission; PR, partial remission; NR, non-remission; Neg, negative; Pos, positive; IA, cytarabine 100 mg/m2 continuous infusion d1-7, idarubicin 12 mg/m2 d1-3; HiDAC, cytarabine 2 g/m2 over 3 h every 12 h on d1-3; CLAG, cladribine 5 mg/m2 d1-5, cytarabine 2 mg/m2 d1-5, granulocyte-colony stimulating factor 5 μg/kg d0-5; VEN+AZA, venetoclax once daily (100 mg d1, 200 mg d2, 400 mg d3-28) and azacitidine 75 mg/m2 d1-7; VEN+MIDO, venetoclax once daily (100 mg d1-21) concurrent with voriconazole, midostaurin twice daily (50 mg d1-21); allo-HSCT, allogeneic haematopoietic stem cell transplantation; MLFS, morphologic leukemia-free state; NE, neutrophils count (×109/L); HB, hemoglobin (g/L); PLT, platelet count (×109/L). aMRD, minimal residual disease detected by multiparameter flow cytometry. bAML1-ETO, the presence of the AML1-ETO fusion gene calculated with standard materials, normalized with respect to the number of ABL1 transcripts and expressed as copy numbers per 1×104 copies of abl.
Figure 2
Figure 2
Venetoclax (VEN) synergizes with midostaurin (PKC412) to inhibit proliferation and induce apoptosis in Kasumi-1 cells. (A) The curve represents the dose-dependent effects of VEN and PKC412 on cell proliferation at 72 h. (B, C) Fa-CI plot and combination index (CI) values were calculated with CompuSyn software. CI < 1 indicates synergy, CI = 1 is additive, and CI > 1 indicates antagonism. The results showed that VEN combined with PKC412 had the most notable synergistic effect. (D) PKC412 induced apoptosis in Kasumi-1 cells and cooperatively induced apoptosis with VEN. Apoptosis was determined by Annexin-V/DAPI staining after Kasumi-1 cells were treated with PKC412 alone and in combination with VEN at the indicated concentrations for 72 h. (E) Kasumi-1 cells was treated with PKC412 and/or VEN at indicated concentration (500nM) for 72 h, and cell cycle analysis was performed by flow cytometry. (F) Kasumi-1 cells were exposed to PKC412 and/or VEN at 1μM for 72 h (BCL-2 and Bax) and 500nM for 8 h (KIT and p-KIT), then subjected to Western blotting. GAPDH was measured as a loading control.

Similar articles

Cited by

References

    1. Arber DA, Orazi A, Hasserjian R, Thiele J, Borowitz MJ, Le Beau MM, et al. . The 2016 Revision to the World Health Organization Classification of Myeloid Neoplasms and Acute Leukemia. Blood (2016) 127:2391–405. doi: 10.1182/blood-2016-03-643544 - DOI - PubMed
    1. Marcucci G, Mrozek K, Ruppert AS, Maharry K, Kolitz JE, Moore JO, et al. . Prognostic Factors and Outcome of Core Binding Factor Acute Myeloid Leukemia Patients With T(8;21) Differ From Those of Patients With Inv(16): A Cancer and Leukemia Group B Study. J Clin Oncol (2005) 23:5705–17. doi: 10.1200/JCO.2005.15.610 - DOI - PubMed
    1. Dohner H, Estey E, Grimwade D, Amadori S, Appelbaum FR, Buchner T, et al. . Diagnosis and Management of AML in Adults: 2017 ELN Recommendations From an International Expert Panel. Blood (2017) 129:424–47. doi: 10.1182/blood-2016-08-733196 - DOI - PMC - PubMed
    1. Ishikawa Y, Kawashima N, Atsuta Y, Sugiura I, Sawa M, Dobashi N, et al. . Prospective Evaluation of Prognostic Impact of KIT Mutations on Acute Myeloid Leukemia With RUNX1-RUNX1T1 and CBFB-Myh11. Blood Adv (2020) 4:66–75. doi: 10.1182/bloodadvances.2019000709 - DOI - PMC - PubMed
    1. Wang Y, Wu DP, Liu QF, Qin YZ, Wang JB, Xu LP, et al. . In Adults With T(8;21)AML, Posttransplant RUNX1/RUNX1T1-Based MRD Monitoring, Rather Than C-KIT Mutations, Allows Further Risk Stratification. Blood (2014) 124:1880–6. doi: 10.1182/blood-2014-03-563403 - DOI - PubMed