Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2022 Mar 9;144(9):3939-3948.
doi: 10.1021/jacs.1c11921. Epub 2022 Feb 25.

Pd(II)-Catalyzed Enantioselective C(sp3)-H Arylation of Cyclopropanes and Cyclobutanes Guided by Tertiary Alkylamines

Affiliations

Pd(II)-Catalyzed Enantioselective C(sp3)-H Arylation of Cyclopropanes and Cyclobutanes Guided by Tertiary Alkylamines

Jesus Rodrigalvarez et al. J Am Chem Soc. .

Abstract

Strained aminomethyl-cycloalkanes are a recurrent scaffold in medicinal chemistry due to their unique structural features that give rise to a range of biological properties. Here, we report a palladium-catalyzed enantioselective C(sp3)-H arylation of aminomethyl-cyclopropanes and -cyclobutanes with aryl boronic acids. A range of native tertiary alkylamine groups are able to direct C-H cleavage and forge carbon-aryl bonds on the strained cycloalkanes framework as single diastereomers and with excellent enantiomeric ratios. Central to the success of this strategy is the use of a simple N-acetyl amino acid ligand, which not only controls the enantioselectivity but also promotes γ-C-H activation of over other pathways. Computational analysis of the cyclopalladation step provides an understanding of how enantioselective C-H cleavage occurs and revealed distinct transition structures to our previous work on enantioselective desymmetrization of N-isobutyl tertiary alkylamines. This straightforward and operationally simple method simplifies the construction of functionalized aminomethyl-strained cycloalkanes, which we believe will find widespread use in academic and industrial settings relating to the synthesis of biologically active small molecules.

PubMed Disclaimer

Conflict of interest statement

The authors declare no competing financial interest.

Figures

Figure 1
Figure 1
(A) Selected pharmaceuticals containing cyclobutanes and cyclopropanes. (B) Selected C–H activation reactions on cyclobutanes and cyclopropanes. (C) Pd(II)-catalyzed enantioselective C(sp3)–H arylation of aminomethyl-cyclopropanes and -cyclobutanes directed by unbiased tertiary alkylamine.
Figure 2
Figure 2
Previous work on Pd(II)-catalyzed γ-C(sp3)–H arylation of tertiary alkylamines.
Figure 3
Figure 3
(A) Computational analysis of the enantiodetermining C–H cleavage on aminomethyl-cyclopropanes. Basis set B3LyP-D3(BJ)/[6-311+G(2d,p)/ SDD(Pd)]. (B) Proposed pathway for of aminomethyl-cyclopropanes via Pd(II)-catalyzed enantioselective γ-methylene-C(sp3)–H arylation.
Chart 1
Chart 1. Scope of Enantioselective γ-Methylene C(sp3)–H Arylation of Aminomethyl-cyclopropanes
Scheme 1
Scheme 1. Reaction of Racemic Disubstituted Aminomethyl-cyclopropanes to Form Enantioenriched Trisubstituted Products
Chart 2
Chart 2. (A, B) Scope of Enantioselective γ-Methylene C(sp3)–H Arylation of Aminomethyl-cyclobutanes and (C) Late-Stage Functionalization of Pharmaceutical Agents
Figure 4
Figure 4
Computational analysis of the enantiodetermining C–H cleavage in cyclobutane rings. Basis set B3LyP-D3(BJ)/[6-311+G(2d,p)/ SDD(Pd)].

Similar articles

Cited by

References

    1. Talele T. T. The “Cyclopropyl Fragment” is a Versatile Player that Frequently Appears in Precilinal/Clinical Drug Molecules. J. Med. Chem. 2016, 59, 8712–8756. 10.1021/acs.jmedchem.6b00472. - DOI - PubMed
    2. Bauer M. R.; Di Fruscia P.; Lucas S. C. C.; Michaelides I. N.; Nelson J. E.; Storer R. I.; Whitehurst B. C. Put a ring on it: application of small aliphatic rings in medicinal chemistry. RSC Med. Chem. 2021, 12, 448–471. 10.1039/D0MD00370K. - DOI - PMC - PubMed
    1. Hsin L.-W.; Chang L.-T.; Rothman R. B.; Dersch C. M.; Fishback J. A.; Matsumoto R. R. Synthesis and Opioid Activity of Enantiomeric N-Substituted 2,3,4,4a,5,6,7,7a-Octahydro-1H-benzofuro[3,2-e]isoquinolines. J. Med. Chem. 2010, 53, 1392–1396. 10.1021/jm901503e. - DOI - PubMed
    2. Flick A. C.; Ding H. X.; Leverett C. A.; Fink S. J.; O’Donnell C. J. Synthetic Approaches to New Drugs Approved During 2016. J. Med. Chem. 2018, 61, 7004–7031. 10.1021/acs.jmedchem.8b00260. - DOI - PubMed
    3. Domon Y.; Arakawa N.; Inoue T.; Matsuda F.; Takahashi M.; Yamamura N.; Kai K.; Kitano Y. Binding Characteristics and Analgesic Effects of Mirogabalin, a Novel Ligand for the α2δSubunit of Voltage-Gated Calcium Channels. J. Pharmacol. Exp. Ther. 2018, 365, 573–582. 10.1124/jpet.117.247551. - DOI - PubMed
    4. Flick A. C.; Leverett C. A.; Ding H. X.; McInturff E.; Fink S. J.; Mahapatra S.; Carney D. W.; Lindsey E. A.; DeForest J. C.; France S. P.; Berritt S.; Bigi-Botterill S. V.; Gibson T. S.; Liu Y.; O’Donnell C. J. Synthetic Approaches to the New Drugs Approved during 2019. J. Med. Chem. 2021, 64, 3604–3657. 10.1021/acs.jmedchem.1c00208. - DOI - PubMed
    1. For selected reviews of cyclopropanation reactions, see:

    2. Davies H. M. L.; Antoulinakis E. G. Intermolecular Metal-Catalyzed Carbenoid Cyclopropanations. Organic Reactions 2001, 57, 1–326. 10.1002/0471264180.or057.01. - DOI
    3. Bartoli G.; Bencivenni G.; Dalpozzo R. Asymmetric cyclopropanation reactions. Synthesis 2014, 46, 979–1029. 10.1055/s-0033-1340838. - DOI
    4. Ebner C.; Carreira E. M. Cyclopropanation Strategies in Recent Total Syntheses. Chem. Rev. 2017, 117, 11651–11679. 10.1021/acs.chemrev.6b00798. - DOI - PubMed
    5. Wu W.; Lin Z.; Jiang H. Recent Advances in the Synthesis of Cyclopropanes. Org. Biomol. Chem. 2018, 16, 7315–7329. 10.1039/C8OB01187G. - DOI - PubMed
    6. Mato M.; Franchino A.; García-Morales C.; Echavarren A. M. Gold-Catalyzed Synthesis of Small Rings. Chem. Rev. 2021, 121, 8613–8684. 10.1021/acs.chemrev.0c00697. - DOI - PMC - PubMed
    7. For selected recent reviews on cyclobutane synthesis, see:

    8. Poplata S.; Troster A.; Zou Y.-Q.; Bach T. Recent advances in the synthesis of cyclobtanes by olefin [2 + 2] cycloaddition. Chem. Rev. 2016, 116, 9748–9815. 10.1021/acs.chemrev.5b00723. - DOI - PMC - PubMed
    9. Li J.; Gao K.; Bian M.; Ding H. Recent advances in the total synthesis of cyclobutane containing natural products. Org. Chem. Front. 2020, 7, 136–154. 10.1039/C9QO01178A. - DOI
    1. Wasa M.; Engle K. M.; Lin D. W.; Yoo E. J.; Yu J.-Q. Pd(II)-catalyzed Enantioselective C–H Activation of Cyclopropanes. J. Am. Chem. Soc. 2011, 133, 19598–19601. 10.1021/ja207607s. - DOI - PMC - PubMed
    2. Jerhaoui S.; Djukic J.-P.; Wencel-Delord J.; Colobert F. Asymmetric, Nearly Barrierless C(sp3)–H Activation Promoted by Easily-Accessible N-Protected Aminosulfoxides as New Chiral Ligands. ACS Catal. 2019, 9, 2532–2542. 10.1021/acscatal.8b04946. - DOI
    3. Chan K. S. L.; Fu H.-Y.; Yu J.-Q. Palladium(II)-Catalyzed Highly Enantioselective C–H Arylation of Cyclopropylmethyl-amines. J. Am. Chem. Soc. 2015, 137, 2042–2046. 10.1021/ja512529e. - DOI - PMC - PubMed
    4. Shen P.-X.; Hu L.; Shao Q.; Hong K.; Yu J.-Q. Pd(II)-Catalyzed Enantioselective C(sp3)–H Arylation of Free Carboxylic Acids. J. Am. Chem. Soc. 2018, 140, 6545–6549. 10.1021/jacs.8b03509. - DOI - PMC - PubMed
    5. Zhuang Z.; Yu J.-Q. Pd(II)-Catalyzed Enantioselective γ-C(sp3)-H Functionalizations of Free Cyclo-propylmethylamines. J. Am. Chem. Soc. 2020, 142, 12015–12019. 10.1021/jacs.0c04801. - DOI - PMC - PubMed
    1. Saget T.; Cramer N. Palladium(0)-Catalyzed Enantioselective C–H Arylation of Cyclopropanes: Efficient Access to Functionalized Tetrahydroquinolines. Angew. Chem., Int. Ed. 2012, 51, 12842–12845. 10.1002/anie.201207959. - DOI - PubMed
    2. Pedroni J.; Saget T.; Donets P. A.; Cramer N. Enantioselective Palladium(0)-Catalyzed Intramolecular Cyclo-propane Functionalization: Access to Dihydroquinolones. Chem. Sci. 2015, 6, 5164–5171. 10.1039/C5SC01909E. - DOI - PMC - PubMed
    3. Pedroni J.; Cramer N. Chiral γ–Lactams by Enantioselective Palladium(0)-Catalyzed Cyclo-propane Functionalizations. Angew. Chem., Int. Ed. 2015, 54, 11826–11829. 10.1002/anie.201505916. - DOI - PubMed
    4. Mayer C.; Ladd C. L.; Charette A. B. Utilization of BozPhos as an Effective Ligand in Enantioselective C–H Functionalization of Cyclopropanes: Synthesis of Dihydro-isoquinolones and Dihydroquinolones. Org. Lett. 2019, 21, 2639–2644. 10.1021/acs.orglett.9b00627. - DOI - PubMed

Publication types