Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2022 Mar 14;147(6):1117-1127.
doi: 10.1039/d1an02220b.

A modular microfluidic platform for serial enrichment and harvest of pure extracellular vesicles

Affiliations

A modular microfluidic platform for serial enrichment and harvest of pure extracellular vesicles

Hogyeong Gwak et al. Analyst. .

Abstract

Extracellular vesicles (EVs) are recognized as promising biomarkers for several diseases. However, their conventional isolation methods have several drawbacks, such as poor yields, low purity, and time-consuming operations. Therefore, a simple, low-cost, and rapid microfluidic platform has been extensively developed to meet the requirement in biomedical applications. Herein, a modular microfluidic platform is demonstrated to isolate and enrich EVs directly from plasma, in a combination of continuous capture and purification of EVs. The EVs were selectively captured by target-specific antibody-coated beads in a horseshoe-shaped orifice micromixer (HOMM) chip within 2 min. A fish-trap-shaped microfilter unit was subsequently used to elute and purify the affinity-induced captured EVs from the microbeads. The ability of the modular chip to capture, enrich, and release EVs was demonstrated in 5 min (100 μL sample) at high throughput (100 μL min-1). The two chips can be modularized or individually operated, depending on the clinical applications such as diagnostics and therapeutics. For the diagnostic applications, the EVs on microbeads can be directly subjected to the molecular analysis whereas the pure EVs should be released from the microbeads for the therapeutic treatments. This study reveals that the fabricated modular chip can be appropriately employed as a platform for EV-related research tools.

PubMed Disclaimer

Similar articles

Cited by

LinkOut - more resources