Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2022 Feb 25;24(2):38.
doi: 10.1208/s12248-022-00688-z.

Prediction of glomerular filtration rate maturation across preterm and term neonates and young infants using inulin as marker

Affiliations

Prediction of glomerular filtration rate maturation across preterm and term neonates and young infants using inulin as marker

Yunjiao Wu et al. AAPS J. .

Abstract

Describing glomerular filtration rate (GFR) maturation across the heterogeneous population of preterm and term neonates and infants is important to predict the clearance of renally cleared drugs. This study aims to describe the GFR maturation in (pre)term neonates and young infants (PNA < 90 days) using individual inulin clearance data (CLinulin). To this end, published GFR maturation models were evaluated by comparing their predicted GFR with CLinulin retrieved from literature. The best model was subsequently optimized in NONMEM V7.4.3 to better fit the CLinulin values. Our study evaluated seven models and collected 381 individual CLinulin values from 333 subjects with median (range) birthweight (BWb) 1880 g (580-4950), gestational age (GA) 34 weeks (25-43), current weight (CW) 1890 g (480-6200), postnatal age (PNA) 3 days (0-75), and CLinulin 2.20 ml/min (0.43-17.90). The De Cock 2014 model (covariates: BWb and PNA) performed the best in predicting CLinulin, followed by the Rhodin 2009 model (covariates: CW and postmenstrual age). The final optimized model shows that GFR at birth is determined by BWb, thereafter the maturation rate of GFR is dependent on PNA and GA, with a higher GA showing an overall faster maturation. To conclude, using individual CLinulin data, we found that a model for neonatal GFR requires a distinction between prenatal maturation quantified by BWb and postnatal maturation. To capture postnatal GFR maturation in (pre)term neonates and young infants, we developed an optimized model in which PNA-related maturation was dependent on GA.

Keywords: Glomerular filtration rate; Inulin; Maturation; Neonates; Preterm.

PubMed Disclaimer

Similar articles

Cited by

References

    1. Salem F, Johnson TN, Hodgkinson ABJ, Ogungbenro K, Rostami-Hodjegan A. Does “Birth” as an Event impact maturation trajectory of renal clearance via glomerular filtration? Reexamining data in preterm and full-term neonates by avoiding the creatinine bias. J Clin Pharmacol. 2021;61(2):159–71. https://doi.org/10.1002/jcph.1725 . - DOI - PubMed
    1. Johnson TN, Rostami-Hodjegan A, Tucker GT. Prediction of the clearance of eleven drugs and associated variability in neonates, infants and children. Clin Pharmacokinet. 2006;45(9):931–56. https://doi.org/10.2165/00003088-200645090-00005 . - DOI - PubMed
    1. Rhodin MM, Anderson BJ, Peters AM, Coulthard MG, Wilkins B, Cole M, Chatelut E, Grubb A, Veal GJ, Keir MJ, Holford NHG. Human renal function maturation: a quantitative description using weight and postmenstrual age. Pediatr Nephrol. 2009;24(1):67–76. https://doi.org/10.1007/s00467-008-0997-5 . - DOI - PubMed
    1. De Cock RF, Allegaert K, Sherwin CM, Nielsen EI, de Hoog M, van den Anker JN, et al. A neonatal amikacin covariate model can be used to predict ontogeny of other drugs eliminated through glomerular filtration in neonates. Pharm Res. 2014;31(3):754–67. https://doi.org/10.1007/s11095-013-1197-y . - DOI - PubMed
    1. De Cock RF, Allegaert K, Brussee JM, Sherwin CM, Mulla H, de Hoog M, et al. Simultaneous pharmacokinetic modeling of gentamicin, tobramycin and vancomycin clearance from neonates to adults: towards a semi-physiological function for maturation in glomerular filtration. Pharm Res. 2014;31(10):2643–54. https://doi.org/10.1007/s11095-014-1361-z . - DOI - PubMed - PMC

LinkOut - more resources