A Machine Learning Approach for an Improved Inertial Navigation System Solution
- PMID: 35214591
- PMCID: PMC8879977
- DOI: 10.3390/s22041687
A Machine Learning Approach for an Improved Inertial Navigation System Solution
Abstract
The inertial navigation system (INS) is a basic component to obtain a continuous navigation solution in various applications. The INS suffers from a growing error over time. In particular, its navigation solution depends mainly on the quality and grade of the inertial measurement unit (IMU), which provides the INS with both accelerations and angular rates. However, low-cost small micro-electro-mechanical systems (MEMSs) suffer from huge error sources such as bias, the scale factor, scale factor instability, and highly non-linear noise. Therefore, MEMS-IMU measurements lead to drifts in the solutions when used as a control input to the INS. Accordingly, several approaches have been introduced to model and mitigate the errors associated with the IMU. In this paper, a machine-learning-based adaptive neuro-fuzzy inference system (ML-based-ANFIS) is proposed to leverage the performance of low-grade IMUs in two phases. The first phase was training 50% of the low-grade IMU measurements with a high-end IMU to generate a suitable error model. The second phase involved testing the developed model on the remaining low-grade IMU measurements. A real road trajectory was used to evaluate the performance of the proposed algorithm. The results showed the effectiveness of utilizing the proposed ML-ANFIS algorithm to remove the errors and improve the INS solution compared to the traditional one. An improvement of 70% in the 2D positioning and of 92% in the 2D velocity of the INS solution were attained when the proposed algorithm was applied compared to the traditional INS solution.
Keywords: ANFIS; INS; MEMS-IMU; machine learning; navigation; positioning.
Conflict of interest statement
The authors declare no conflict of interest.
Figures
















References
-
- Noureldin A., Karamat T.B., Georgy J. Fundamentals of Inertial Navigation, Satellite-Based Positioning and their Integration. Volume 1. Springer; Berlin/Heidelberg, Germany: 2013. p. 313. - DOI
-
- Titterton D., Weston J. Strapdown Inertial Navigation Technology. Institution of Engineering and Technology; London, UK: 2004. - DOI
-
- Abosekeen A., Iqbal U., Noureldin A., Korenberg M.J. A Novel Multi-Level Integrated Navigation System for Challenging GNSS Environments. IEEE Trans. Intell. Transp. Syst. 2021;22:4838–4852. doi: 10.1109/TITS.2020.2980307. - DOI
-
- Li Y., Chen R., Niu X., Zhuang Y., Gao Z., Hu X., El-Sheimy N. Inertial Sensing Meets Artificial Intelligence: Opportunity or Challenge? arXiv. 20202007.06727
-
- Abosekeen A., Noureldin A., Karamat T., Korenberg M.J. Comparative Analysis of Magnetic-Based RISS using Different MEMS-Based Sensors; Proceedings of the 30th International Technical Meeting of the Satellite Division of the Institute of Navigation (ION GNSS+ 2017); Portland, OR, USA. 25–29 September 2017; pp. 2944–2959. - DOI
MeSH terms
LinkOut - more resources
Full Text Sources