Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2022 Jan 24;15(2):135.
doi: 10.3390/ph15020135.

Laboratory Selection of Trypanosomatid Pathogens for Drug Resistance

Affiliations
Review

Laboratory Selection of Trypanosomatid Pathogens for Drug Resistance

Sabina Beilstein et al. Pharmaceuticals (Basel). .

Abstract

The selection of parasites for drug resistance in the laboratory is an approach frequently used to investigate the mode of drug action, estimate the risk of emergence of drug resistance, or develop molecular markers for drug resistance. Here, we focused on the How rather than the Why of laboratory selection, discussing different experimental set-ups based on research examples with Trypanosoma brucei, Trypanosoma cruzi, and Leishmania spp. The trypanosomatids are particularly well-suited to illustrate different strategies of selecting for drug resistance, since it was with African trypanosomes that Paul Ehrlich performed such an experiment for the first time, more than a century ago. While breakthroughs in reverse genetics and genome editing have greatly facilitated the identification and validation of candidate resistance mutations in the trypanosomatids, the forward selection of drug-resistant mutants still relies on standard in vivo models and in vitro culture systems. Critical questions are: is selection for drug resistance performed in vivo or in vitro? With the mammalian or with the insect stages of the parasites? Under steady pressure or by sudden shock? Is a mutagen used? While there is no bona fide best approach, we think that a methodical consideration of these questions provides a helpful framework for selection of parasites for drug resistance in the laboratory.

Keywords: Leishmania; Trypanosoma brucei; Trypanosoma cruzi; drug resistance; in vitro cultivation.

PubMed Disclaimer

Conflict of interest statement

The authors declare no conflict of interest.

References

    1. Murray C.J.L., Lopez A.D. Measuring global health: Motivation and evolution of the Global Burden of Disease Study. Lancet. 2017;390:1460–1464. doi: 10.1016/S0140-6736(17)32367-X. - DOI - PubMed
    1. Lee B.Y., Bacon K.M., Bottazzi M.E., Hotez P.J. Global economic burden of Chagas disease: A computational simulation model. Lancet Infect. Dis. 2013;13:342–348. doi: 10.1016/S1473-3099(13)70002-1. - DOI - PMC - PubMed
    1. Barnes R.L., Shi H., Kolev N.G., Tschudi C., Ullu E. Comparative genomics reveals two novel RNAi factors in Trypanosoma brucei and provides insight into the core machinery. PLoS Pathog. 2012;8:e1002678. doi: 10.1371/journal.ppat.1002678. - DOI - PMC - PubMed
    1. Berriman M., Ghedin E., Hertz-Fowler C., Blandin G., Renauld H., Bartholomeu D.C., Lennard N.J., Caler E., Hamlin N.E., Haas B., et al. The genome of the African trypanosome Trypanosoma brucei. Science. 2005;309:416–422. doi: 10.1126/science.1112642. - DOI - PubMed
    1. El-Sayed N.M., Myler P.J., Bartholomeu D.C., Nilsson D., Aggarwal G., Tran A.N., Ghedin E., Worthey E.A., Delcher A.L., Blandin G., et al. The genome sequence of Trypanosoma cruzi, etiologic agent of Chagas disease. Science. 2005;309:409–415. doi: 10.1126/science.1112631. - DOI - PubMed

LinkOut - more resources