Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2022 Jul:210:112990.
doi: 10.1016/j.envres.2022.112990. Epub 2022 Feb 23.

Assessment of heavy metals should be performed before the development of the selenium-rich soil: A case study in China

Affiliations

Assessment of heavy metals should be performed before the development of the selenium-rich soil: A case study in China

Yonglin Liu et al. Environ Res. 2022 Jul.

Abstract

The use of selenium (Se)-rich soils in China is an effective method for rural revitalization, but assessment of heavy metals is essential prior to the development of Se-rich soils. This study was focused on the Jiangjin district, a typical Se-rich area located in Sichuan Basin of China, to investigate contamination, influencing factors, and sources of As, Cr, Cu, Cd, Ni, Pb, Sb, and Zn based on 156 topsoil samples. This study analyzed and compared the enrichment factor (EF), Nemerow index (PN), geographical information system (GIS), and positive matrix factorization (PMF). Results demonstrate that the average values of As, Cu, Cd, Sb, and Zn in topsoil were higher than the soil background values of western Chongqing by approximately 1.75, 1.11, 1.27, 1.71, and 2.58 times, respectively, indicating that some heavy metals have been enriched in the soils. The polluted areas of As, Cu, Cd, and Zn in topsoil were mainly distributed in the northern and central Jiangjin district, whereas high-Sb soils were located in the southeast. The Cr, Cu, Cd, Pb, and Sb were concentrated in Se-rich soils, indicating that heavy metals pollution should be carefully considered for the utilization of Se-rich soils. Four potential sources of heavy metals were found in this study area: 1) the parent materials (Cr, Ni, Cu); 2) industrial activities with high coal consumption (As); 3) mechanical and chemical industrial activities (Zn, Sb); and 4) transportation and agricultural activities (Pb, Cd). These observations provide a scientific basis for the development, utilization, and protection of Se-rich soil resources.

Keywords: Heavy metals; Positive matrix factorization; Selenium-rich soil; Sichuan basin; Spatial analysis.

PubMed Disclaimer

LinkOut - more resources