Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2022 Apr 5:617:121620.
doi: 10.1016/j.ijpharm.2022.121620. Epub 2022 Feb 25.

Antioxidant, anti-inflammatory, and wound healing effects of topical silver-doped zinc oxide and silver oxide nanocomposites

Affiliations
Free article

Antioxidant, anti-inflammatory, and wound healing effects of topical silver-doped zinc oxide and silver oxide nanocomposites

Francyelle Borges Rosa de Moura et al. Int J Pharm. .
Free article

Abstract

Silver nanoparticles (Ag-NPs), silver oxide nanoparticles (AgO-NPs), and zinc oxide nanoparticles (ZnO-NPs) have healing, antibacterial, and antioxidant properties. Furthermore, Ag-NPs and ZnO-NPs also have anti-inflammatory properties. In this study, we synthesized a nanocomposite using Ag-ZnO and AgO-NPs (Ag-ZnO/AgO NPs). The structural and morphological properties of nanocrystals and nanocomposite were investigated by X-ray diffraction and scanning electronics microscopic. The wurtzite crystalline structure of Ag-ZnO and two morphologies for the nanocomposite (nanorods and nanoplatelets) were determined. Topical treatment with 1% Ag-ZnO/AgO NPs was compared to untreated wounds (control group). Wounds were induced in the dorsal region of BALB/c mice and evaluated after 3, 7, 14, and 21 days of treatment. The nanocomposite demonstrated anti-inflammatory and antioxidant capacities. In addition, wounds treated with Ag-ZnO/AgO NPs showed accelerated closure, non-cytotoxicity, especially on keratinocytes and collagen deposition, and increased metalloproteinases 2 and 9 activity. The nanocomposite improved healing by reducing the inflammatory process, protecting tissues from damage caused by free radicals, and increasing collagen deposition in the extracellular matrix. These characteristics contributed to the accelerated wound closure process. Thus, Ag-ZnO/AgO NPs show potential for can be a strategy for topical use in formulations of new drugs to treat wounds.

Keywords: Inflammation; Nanocomposite; Nanomedicine; Oxidative stress; Skin.

PubMed Disclaimer

Similar articles

Cited by

LinkOut - more resources