Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2022 Feb;4(2):180-189.
doi: 10.1038/s42255-022-00533-9. Epub 2022 Feb 28.

The endothelial Dll4-muscular Notch2 axis regulates skeletal muscle mass

Affiliations

The endothelial Dll4-muscular Notch2 axis regulates skeletal muscle mass

Shin Fujimaki et al. Nat Metab. 2022 Feb.

Erratum in

Abstract

Adult skeletal muscle is a highly plastic tissue that readily reduces or gains its mass in response to mechanical and metabolic stimulation; however, the upstream mechanisms that control muscle mass remain unclear. Notch signalling is highly conserved, and regulates many cellular events, including proliferation and differentiation of various types of tissue stem cell via cell-cell contact. Here we reveal that multinucleated myofibres express Notch2, which plays a crucial role in disuse- or diabetes-induced muscle atrophy. Mechanistically, in both atrophic conditions, the microvascular endothelium upregulates and releases the Notch ligand, Dll4, which then activates muscular Notch2 without direct cell-cell contact. Inhibition of the Dll4-Notch2 axis substantively prevents these muscle atrophy and promotes mechanical overloading-induced muscle hypertrophy in mice. Our results illuminate a tissue-specific function of the endothelium in controlling tissue plasticity and highlight the endothelial Dll4-muscular Notch2 axis as a central upstream mechanism that regulates catabolic signals from mechanical and metabolic stimulation, providing a therapeutic target for muscle-wasting diseases.

PubMed Disclaimer

Similar articles

Cited by

References

    1. Sjoqvist, M. & Andersson, E. R. Do as I say, Not(ch) as I do: lateral control of cell fate. Dev. Biol. 447, 58–70 (2019). - PubMed - DOI
    1. Kovall, R. A., Gebelein, B., Sprinzak, D. & Kopan, R. The canonical notch signaling pathway: structural and biochemical insights into shape, sugar, and force. Dev. Cell 41, 228–241 (2017). - PubMed - PMC - DOI
    1. Koch, U., Lehal, R. & Radtke, F. Stem cells living with a Notch. Development 140, 689–704 (2013). - PubMed - DOI
    1. Baghdadi, M. B. et al. Reciprocal signalling by Notch-Collagen V-CALCR retains muscle stem cells in their niche. Nature 557, 714–718 (2018). - PubMed - PMC - DOI
    1. Fukada, S. et al. Hesr1 and Hesr3 are essential to generate undifferentiated quiescent satellite cells and to maintain satellite cell numbers. Development 138, 4609–4619 (2011). - PubMed - PMC - DOI

Publication types