Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2022 Mar 22;16(3):3994-4003.
doi: 10.1021/acsnano.1c09582. Epub 2022 Mar 2.

Two-Dimensional Self-Assembly of Boric Acid-Functionalized Graphene Quantum Dots: Tunable and Superior Optical Properties for Efficient Eco-Friendly Luminescent Solar Concentrators

Affiliations

Two-Dimensional Self-Assembly of Boric Acid-Functionalized Graphene Quantum Dots: Tunable and Superior Optical Properties for Efficient Eco-Friendly Luminescent Solar Concentrators

Kun-Bin Cai et al. ACS Nano. .

Abstract

Carbon-based nanomaterials hold promise for eco-friendly alternatives to heavy-metal-containing quantum dots (QDs) in optoelectronic applications. Here, boric acid-functionalized graphene quantum dots (B-GQDs) were prepared using bottom-up molecular fusion based on nitrated pyrenes and boric acid. Such B-GQDs with crystalline graphitic structures and hydrogen-bonding functionalities would be suitable model systems for unraveling the photoluminescence (PL) mechanism, while serving as versatile building blocks for supramolecular self-assembly. Unlike conventional GQDs with multiple emissive states, the B-GQDs exhibited excitation-wavelength-independent, vibronic-coupled excitonic emission. Interestingly, their PL spectra can be tuned without largely sacrificing the quantum yield (QY) due to two-dimensional self-assembly. In addition, such B-GQDs in a polystyrene matrix possessed an ultrahigh QY (∼90%) and large exciton binding energy (∼300 meV). Benefiting from broadband absorption, ultrahigh QY, and long-wavelength emission, efficient laminated luminescent solar concentrators (100 × 100 × 6.3 mm3) were fabricated, yielding a high power conversion efficiency (1.4%).

Keywords: aggregation-caused quenching; boric-acid functionalized graphene quantum dots; luminescent solar concentrators; quantum yield; two-dimensional self-assembly.

PubMed Disclaimer

Similar articles

Cited by

LinkOut - more resources