Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2022 Mar 2;17(3):e0260872.
doi: 10.1371/journal.pone.0260872. eCollection 2022.

Effects of cytochrome P450 2B6 and constitutive androstane receptor genetic variation on Efavirenz plasma concentrations among HIV patients in Kenya

Affiliations

Effects of cytochrome P450 2B6 and constitutive androstane receptor genetic variation on Efavirenz plasma concentrations among HIV patients in Kenya

Musa Otieno Ngayo et al. PLoS One. .

Abstract

The effects of genetic variation of cytochrome P450 2B6 (CYP2B6) and constitutive androstane receptor (CAR) on efavirenz (EFV) plasma concentration was evaluated among 312 HIV patients in Nairobi Kenya. The EFV plasma concentration at steady-state were determined using ultra-high-performance liquid chromatography with a tandem quadruple mass spectrometer (LC-MS/MS). Thirteen CYP2B6 (329G>T, 341T>C, 444 G>T/C, 15582C>T, 516G>T, 548T>G, 637T>C, 785A>G, 18492C>T, 835G>C, 1459C>T and 21563C>T) and one CAR (540C>T) single nucleotide polymorphisms (SNPs) were genotyped using real-time polymerase chain reaction. HIV drug resistance mutations were detected using an in-house genotypic assay. The EFV concentration of patients ranged from 4 ng/mL to 332697 ng/mL (median 2739.5 ng/mL, IQR 1878-4891.5 ng/mL). Overall, 22% patients had EFV concentrations beyond therapeutic range of 1000-4000 ng/mL (4.5%% < 1000 ng/mL and 31.7% > 4000 ng/mL). Five SNPs (15582C>T, 516G>T, 785A>G, 983T>C and 21563C>T) were associated with higher EFV plasma concentration while 18492C>T with lower EFV plasma concentration (p<0.05). Strong linkage disequilibrium (LD) was observed for 15582C>T, 516G>T, 785A>G, 18492C>T, 983T>C, 21563C>T, 1459C>T and CAR 540C>T. Sixteen haplotypes were observed and CTGCTTCC, CTGCTTCT, TTGCTTCT and CGACCCCT were associated with high EFV plasma concentration. In multivariate analysis, factors significantly associated with EFV plasma concentration included; the presence of skin rash (β = 1379, 95% confidence interval (CI) = 3216.9-3416.3; p < 0.039), T allele of CYP2B6 516G>T (β = 1868.9, 95% CI 3216.9-3416.3; p < 0.018), the C allele of CYP2B6 983T>C (β = 2638.3, 95% CI = 1348-3929; p < 0.0001), T allele of CYP2B6 21563C>T (β = 1737, 95% CI = 972.2-2681.9; p < 0.0001) and the presence of 5 to 7 numbers of SNPs per patient (β = 570, 95% CI = 362-778; p < 0.0001) and HIV viral load ≤1000 cells/mL (β = -4199.3, 95% CI = -7914.9 --483.6; p = 0.027). About 36.2% of the patients had EFV plasma concentrations beyond therapeutic window, posing high risk of treatment failure or toxicity. The SNPs of CYP2B6 516G>T, CYP2B6 983T>C, 21563C>T, presence of higher numbers of SNPs per patient and haplotypes CTGCTTCC, CTGCTTCT, TTGCTTCT and CGACCCCT could efficiently serves as genetic markers for EFV plasma concentration and could guide personalization of EFV based ART treatment in Kenya.

PubMed Disclaimer

Conflict of interest statement

The authors have declared that no competing interests exist.

References

    1. Ward BA, Gorski JC, Jones DR, Hall SD, Flockhart D, Desta Z. The cytochrome P450 2B6 (CYP2B6) is the main catalyst of efavirenz primary and secondary metabolism: Implication for HIV/AIDS therapy and utility of efavirenz as a substrate marker of CYP2B6 catalytic activity. Journal of Pharmacology and Experimental Therapeutics, 2003; 306(1), 287–300. 10.1124/jpet.103.049601 - DOI - PubMed
    1. Desta Z, Saussele T, Ward B, Blievernicht J, Li L, Klein K et al.. Impact of CYP2B6 polymorphism on hepatic efavirenz metabolism in vitro. Pharmacogenomics. 2007. 8(6):547–58. doi: 10.2217/14622416.8.6.547 - DOI - PubMed
    1. Ogburn ET, Jones DR, Masters AR, Xu C, Guo Y, Desta Z. Efavirenz primary and secondary metabolism in vitro and in vivo: identification of novel metabolic pathways and cytochrome P450 2A6 as the principal catalyst of efavirenz 7-hydroxylation. Drug Metab Dispos. 2010. 38(7):1218–29. doi: 10.1124/dmd.109.031393 - DOI - PMC - PubMed
    1. Mutlib AE, Chen H, Nemeth GA, Markwalder JA, Seitz SP, Gan LS et al.. Identification and characterization of efavirenz metabolites by liquid chromatography/mass spectrometry and high field NMR: species differences in the metabolism of efavirenz. Drug Metab Dispos. 1999. Nov;27(11):1319–33. . - PubMed
    1. Bae SK, Jeong YJ, Lee C, Liu KH. Identification of human UGT isoforms responsible for glucuronidation of efavirenz and its three hydroxy metabolites. Xenobiotica. 2011; 41(6):437–44. doi: 10.3109/00498254.2011.551849 Epub 2011 Feb 14. . - DOI - PubMed

MeSH terms