Mouse Model for Optogenetic Genome Engineering
- PMID: 35236992
- DOI: 10.18926/AMO/63202
Mouse Model for Optogenetic Genome Engineering
Abstract
Optogenetics, a technology to manipulate biological phenomena thorough light, has attracted much attention in neuroscience. Recently, the Magnet System, a photo-inducible protein dimerization system which can control the intracellular behavior of various biomolecules with high accuracy using light was developed. Furthermore, photoactivation systems for controlling biological phenomena are being developed by combining this technique with genome-editing technology (CRISPR/Cas9 System) or DNA recombination technology (Cre-loxP system). Herein, we review the history of optogenetics and the latest Magnet System technology and introduce our recently developed photoactivatable Cre knock-in mice with temporal-, spatial-, and cell-specific accuracy.
Keywords: Cre recombinase; optogenetics.
Conflict of interest statement
No potential conflict of interest relevant to this article was reported.
Similar articles
-
[Manipulating Living Systems by Light].Yakugaku Zasshi. 2020;140(8):993-1000. doi: 10.1248/yakushi.20-00012-5. Yakugaku Zasshi. 2020. PMID: 32741873 Review. Japanese.
-
Establishment of a tTA-dependent photoactivatable Cre recombinase knock-in mouse model for optogenetic genome engineering.Biochem Biophys Res Commun. 2020 May 21;526(1):213-217. doi: 10.1016/j.bbrc.2020.03.015. Epub 2020 Mar 20. Biochem Biophys Res Commun. 2020. PMID: 32204914
-
A photoactivatable Cre-loxP recombination system for optogenetic genome engineering.Nat Chem Biol. 2016 Dec;12(12):1059-1064. doi: 10.1038/nchembio.2205. Epub 2016 Oct 10. Nat Chem Biol. 2016. PMID: 27723747
-
Photoactivatable CRISPR-Cas9 for optogenetic genome editing.Nat Biotechnol. 2015 Jul;33(7):755-60. doi: 10.1038/nbt.3245. Epub 2015 Jun 15. Nat Biotechnol. 2015. PMID: 26076431
-
Optogenetics for transcriptional programming and genetic engineering.Trends Genet. 2022 Dec;38(12):1253-1270. doi: 10.1016/j.tig.2022.05.014. Epub 2022 Jun 20. Trends Genet. 2022. PMID: 35738948 Free PMC article. Review.
Cited by
-
Discovery and characterization of novel Cre-type tyrosine site-specific recombinases for advanced genome engineering.Nucleic Acids Res. 2023 May 9;51(10):5285-97. doi: 10.1093/nar/gkad366. Online ahead of print. Nucleic Acids Res. 2023. PMID: 37158248 Free PMC article.
-
Unlocking the potential of adeno-associated virus in neuroscience: a brief review.Mol Biol Rep. 2024 Apr 22;51(1):563. doi: 10.1007/s11033-024-09521-6. Mol Biol Rep. 2024. PMID: 38647711 Free PMC article. Review.
References
-
- Hegemann P: Algal sensory photoreceptors. Annu Rev Plant Biol (2008) 59: 167-189.
-
- Zhang F, Wang LP, Brauner M, Liewald JF, Kay K, Watzke N, Wood PG, Bamberg E, Nagel G, Gottschalk A and Deisseroth K: Multimodal fast optical interrogation of neural circuitry. Nature (2007) 446: 633-639.
-
- Chow BY, Han X, Dobry AS, Qian X, Chuong AS, Li M, Henninger MA, Belfort GM, Lin Y, Monahan PE and Boyden ES: High-performance genetically targetable optical neural silencing by light-driven proton pumps. Nature (2010) 463: 98-102.
-
- Boyden ES, Zhang F, Bamberg E, Nagel G and Deisseroth K: Millisecond-timescale, genetically targeted optical control of neural activity. Nat Neurosci (2005) 8: 1263-1268.
-
- Deisseroth K, Feng G, Majewska AK, Miesenböck G, Ting A and Schnitzer MJ: Next-generation optical technologies for illuminating genetically targeted brain circuits. J Neurosci (2006) 26: 10380- 10386.
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources