Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2022 Feb 15:13:831928.
doi: 10.3389/fphys.2022.831928. eCollection 2022.

Convergent Loss of Prothoracicotropic Hormone, A Canonical Regulator of Development, in Social Bee Evolution

Affiliations

Convergent Loss of Prothoracicotropic Hormone, A Canonical Regulator of Development, in Social Bee Evolution

Claudinéia P Costa et al. Front Physiol. .

Abstract

The evolution of insect sociality has repeatedly involved changes in developmental events and their timing. Here, we propose the hypothesis that loss of a canonical regulator of moulting and metamorphosis, prothoracicotropic hormone (PTTH), and its receptor, Torso, is associated with the evolution of sociality in bees. Specifically, we posit that the increasing importance of social influences on early developmental timing in social bees has led to their decreased reliance on PTTH, which connects developmental timing with abiotic cues in solitary insects. At present, the evidence to support this hypothesis includes the absence of genes encoding PTTH and Torso from all fully-sequenced social bee genomes and its presence in all available genomes of solitary bees. Based on the bee phylogeny, the most parsimonious reconstruction of evolutionary events is that this hormone and its receptor have been lost multiple times, across independently social bee lineages. These gene losses shed light on possible molecular and cellular mechanisms that are associated with the evolution of social behavior in bees. We outline the available evidence for our hypothesis, and then contextualize it in light of what is known about developmental cues in social and solitary bees, and the multiple precedences of major developmental changes in social insects.

Keywords: bees; development; evolution; hormones; sociality.

PubMed Disclaimer

Conflict of interest statement

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Figures

Figure 1
Figure 1
Phylogeny of bees selected for presence and absence of Torso-activation cassette components analysis in bee genomes. We have marked each gene as present (green) or absent (red) in each species. Species names are colored according to degree of social complexity: gray: solitary (ancestrally, and also now); blue: subsocial; purple: communal; orange: facultative eusocial; and yellow: eusocial. Eufriesea mexicana is communal, although the details of its social biology are relatively unknown (Cardinal and Danforth, 2011). Phylogenetic relationships between social and solitary bees were based on the best current phylogenetic data available for the Hymenoptera (Cardinal et al., 2010; Kapheim et al., 2015; Branstetter et al., 2017).

References

    1. Albalat R., Cañestro C. (2016). Evolution by gene loss. Nat. Rev. Genet. 17, 379–391. doi: 10.1038/nrg.2016.39 - DOI - PubMed
    1. Altschul S. F., Gish W., Miller W., Myers E. W., Lipman D. J. (1990). Basic local alignment search tool. J. Mol. Biol. 215, 403–410. doi: 10.1016/S0022-2836(05)80360-2, PMID: - DOI - PubMed
    1. Batra S. W. (1966). Nests and social behavior of halictine bees of India (Hymenoptera: Halictidae). Indian J. Entomol. 28:375.
    1. Berens A. J., Hunt J. H., Toth A. L. (2015). Comparative transcriptomics of convergent evolution: different genes but conserved pathways underlie caste phenotypes across lineages of eusocial insects. Mol. Biol. Evol. 32, 690–703. doi: 10.1093/molbev/msu330, PMID: - DOI - PubMed
    1. Bossert S., Murray E. A., Almeida E. A., Brady S. G., Blaimer B. B., Danforth B. N. (2019). Combining transcriptomes and ultraconserved elements to illuminate the phylogeny of Apidae. Mol. Phylogenet. Evol. 130, 121–131. doi: 10.1016/j.ympev.2018.10.012, PMID: - DOI - PubMed