Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2022 May:155:105324.
doi: 10.1016/j.neuint.2022.105324. Epub 2022 Mar 2.

Therapeutic function of iPSCs-derived primitive neuroepithelial cells in a rat model of Parkinson's disease

Affiliations

Therapeutic function of iPSCs-derived primitive neuroepithelial cells in a rat model of Parkinson's disease

Yu Guo et al. Neurochem Int. 2022 May.

Abstract

Induced pluripotent stem cells (iPSCs) are a promising unlimited source for cell replacement therapy of neurodegenerative disorders, including Parkinson's disease (PD). In the present study, rat iPSCs-derived primitive neuroepithelial cells (RiPSCs-iNECs) were successfully induced from rat iPSCs (RiPSCs) following two major developmental stages, and could generate neurospheres and differentiated into both neurons and astrocytes in vitro. Then, the RiPSCs-iNECs-GFP+ were unilaterally transplanted into the right substantia nigra (SN) of 6-hydroxydopamine-lesioned rat models of PD. The results demonstrated that the grafted RiPSCs-iNECs could survive in parkinsonian rat brain for at least 150 days, and many of them differentiated into tyrosine hydroxylase (TH)-positive cells. Furthermore, the PD model rats grafted with RiPSCs-iNECs exhibited a significant functional recovery from their parkinsonian behavioral defects. Histological studies showed that RiPSCs-iNECs could differentiate into multiple types of neurons including dopaminergic neurons, GFAP, Pax6, FoxA2 and DAT-positive cells, and induced dopaminergic neurons extended dense neurites into the host striatum. Thus, iPSCs derived primitive neuroepithelial cells could be an attractive candidate as a source of donor material for the treatment of PD, but the molecular mechanism needs further clarification.

Keywords: Cell transplantation; Neuroepithelial cells; Parkinson's disease; Rat induced pluripotent stem cells.

PubMed Disclaimer

Publication types