Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 1986 May-Jun;11(3):199-213.
doi: 10.2165/00003088-198611030-00002.

Drug disposition in obese humans. An update

Review

Drug disposition in obese humans. An update

D R Abernethy et al. Clin Pharmacokinet. 1986 May-Jun.

Abstract

Drug disposition for many drugs has now been studied in obese individuals and some general conclusions can be drawn. Absorption of drugs evaluated to date is unchanged due to obesity. Apparent volume of distribution is greatly increased for some drugs including most benzodiazepines, thiopentone, phenytoin, verapamil and lignocaine (lidocaine). Modest increases in volume of distribution have been noted for methylxanthines, aminoglycosides, vancomycin, ibuprofen, prednisolone and heparin. Distribution of digoxin, cimetidine and procainamide is unchanged in obesity. The mechanism for the increased distribution of some drugs and unchanged distribution of others in obesity is unclear at present. It may be in part due to the lipophilic character of the drug molecule; however, other complex and as yet poorly understood factors contribute to the variability in drug distribution in obese patients. Protein binding of drugs bound to albumin is not dramatically changed in obesity. In contrast, some studies report that drugs bound to alpha 1-acid glycoprotein (AAG) may have increased binding that is related to increased serum AAG concentration; however, this is not a consistent finding. Oxidative drug biotransformation is minimally changed in obesity with the exceptions of ibuprofen and prednisolone, for which clearance increases as a highly correlated function of total bodyweight. Drug conjugation uniformly increases as a function of bodyweight in obesity, with paracetamol (acetaminophen), lorazepam and oxazepam having been studied. Drug acetylation may be unchanged in obesity, with only procainamide evaluated at this time. High clearance drugs, including lignocaine, verapamil and midazolam, have no change in clearance in obese individuals compared to normal bodyweight controls. Renal clearance of drugs is little changed for some drugs evaluated (digoxin, cimetidine), and increased for others (aminoglycosides, unmetabolised procainamide). Characterisation of appropriate animal models of obesity is underway to clarify the mechanisms for these in vivo pharmacokinetic observations in obese man. Two models, the Zucker obese and the obese cafeteria-fed male Sprague-Dawley rat, have provided preliminary physiological pharmacokinetic data with evaluations of theophylline, phenobarbitone and verapamil.(ABSTRACT TRUNCATED AT 400 WORDS)

PubMed Disclaimer

Similar articles

Cited by

References

    1. Br J Nutr. 1982 Jul;48(1):1-6 - PubMed
    1. Am J Cardiol. 1984 Apr 1;53(8):1183-6 - PubMed
    1. Clin Pharmacokinet. 1983 Sep-Oct;8(5):378-409 - PubMed
    1. Circulation. 1983 May;67(5):968-77 - PubMed
    1. Ann Intern Med. 1983 Dec;99(6):757-61 - PubMed

Publication types

MeSH terms