Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2022 Feb:80:215-225.
doi: 10.1016/j.jsr.2021.12.001. Epub 2021 Dec 13.

Physiological signal-based drowsiness detection using machine learning: Singular and hybrid signal approaches

Affiliations

Physiological signal-based drowsiness detection using machine learning: Singular and hybrid signal approaches

Md Mahmudul Hasan et al. J Safety Res. 2022 Feb.

Abstract

Introduction: Drowsiness is one of the main contributors to road-related crashes and fatalities worldwide. To address this pressing global issue, researchers are continuing to develop driver drowsiness detection systems that use a variety of measures. However, most research on drowsiness detection uses approaches based on a singular metric and, as a result, fail to attain satisfactory reliability and validity to be implemented in vehicles.

Method: This study examines the utility of drowsiness detection based on singular and a hybrid approach. This approach considered a range of metrics from three physiological signals - electroencephalography (EEG), electrooculography (EOG), and electrocardiography (ECG) - and used subjective sleepiness indices (assessed via the Karolinska Sleepiness Scale) as ground truth. The methodology consisted of signal recording with a psychomotor vigilance test (PVT), pre-processing, extracting, and determining the important features from the physiological signals for drowsiness detection. Finally, four supervised machine learning models were developed based on the subjective sleepiness responses using the extracted physiological features to detect drowsiness levels.

Results: The results illustrate that the singular physiological measures show a specific performance metric pattern, with higher sensitivity and lower specificity or vice versa. In contrast, the hybrid biosignal-based models provide a better performance profile, reducing the disparity between the two metrics.

Conclusions: The outcome of the study indicates that the selected features provided higher performance in the hybrid approaches than the singular approaches, which could be useful for future research implications. Practical Applications: Use of a hybrid approach seems warranted to improve in-vehicle driver drowsiness detection system. Practical applications will need to consider factors such as intrusiveness, ergonomics, cost-effectiveness, and user-friendliness of any driver drowsiness detection system.

Keywords: Accuracy; Drowsiness; Features; Ground truth; Machine learning; Physiological signals; Sensitivity; Specificity.

PubMed Disclaimer

Conflict of interest statement

Declaration of Competing Interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Publication types

LinkOut - more resources