Discriminants and Semi-orthogonal Decompositions
- PMID: 35250038
- PMCID: PMC8863775
- DOI: 10.1007/s00220-021-04298-2
Discriminants and Semi-orthogonal Decompositions
Abstract
The derived categories of toric varieties admit semi-orthogonal decompositions coming from wall-crossing in GIT. We prove that these decompositions satisfy a Jordan-Hölder property: the subcategories that appear, and their multiplicities, are independent of the choices made. For Calabi-Yau toric varieties wall-crossing instead gives derived equivalences and autoequivalences, and mirror symmetry relates these to monodromy around the GKZ discriminant locus. We formulate a conjecture equating intersection multiplicities in the discriminant with the multiplicities appearing in certain semi-orthogonal decompositions. We then prove this conjecture in some cases.
© The Author(s) 2022.
Figures
References
-
- Anno, R., Logvinenko, T.: Spherical DG-functors. J. EMS 19(9), 2577–2656. arXiv:1309.5035
-
- Aspinwall, P., Plesser, M., Wang, K.: Mirror symmetry and discriminants. arXiv:1702.04661
-
- Ballard, M., Favero, D., Katzarkov, L.: Variation of geometric invariant theory quotients and derived categories. J. Reine Angew. Math. 746, 235–303 (2019). arXiv:1203.6643
-
- Böhning, C., Graf von Bothmer, H-C. , Sosna, P.: On the Jordan–Hölder property for geometric derived categories. Adv. Math. 256, 479–492. arXiv:1211.1229
-
- Donovan, W., Segal, E.: Mixed braid group actions from deformations of surface singularities. Commun. Math. Phys. 335(1), 497–543 (2015). arXiv:1310.7877
LinkOut - more resources
Full Text Sources