Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2022 Feb 18;7(8):7223-7228.
doi: 10.1021/acsomega.1c06996. eCollection 2022 Mar 1.

Development of a Practical Synthesis of the 8-FDC Fragment of OPC-167832

Affiliations

Development of a Practical Synthesis of the 8-FDC Fragment of OPC-167832

Vijayagopal Gopalsamuthiram et al. ACS Omega. .

Abstract

A concise and practical synthesis has been developed to provide the 8-fluoro-5-hydroxy-3,4-diydrocarbostyril (8-FDC) fragment of OPC-167832 in 41% yield and in >99% purity over four steps from 3-amino-4-fluorophenol. The key feature of this process is the development of a telescoped one-pot synthesis of the quinolone via a chemoselective amidation/acid-induced cyclization that allows for simple product isolation without the need for column chromatography.

PubMed Disclaimer

Conflict of interest statement

The authors declare no competing financial interest.

Figures

Figure 1
Figure 1
OPC-167832.
Scheme 1
Scheme 1. Reported and Proposed Synthetic Strategy to 8-FDC
Scheme 2
Scheme 2. Planned Forward Synthesis of 8-FDC
Figure 2
Figure 2
Mass recovery vs sulfuric acid loading and solvent.
Scheme 3
Scheme 3. Telescoped One-Pot Quinolone Synthesis
Figure 3
Figure 3
Reaction progress at different stages utilizing reverse-quenching. (a) Reaction of 10, PivCl, and DIPEA. (b) After addition of 6, rt, 14 h. (c) After addition of H2SO4. (d) After inverse quench. (e) Filtered product.
Scheme 4
Scheme 4. Conversion of Quinolone 7 to 8-FDC

References

    1. Robertson G. T.; Ramey M. E.; Massoudi L. M.; Carter C. L.; Zimmerman M.; Kaya F.; Graham B. G.; Gruppo V.; Hastings C.; Woolhiser L. K.; Scott D. W. L.; Asay B. C.; Eshun-Wilson F.; Maidj E.; Podell B. K.; Vásquez J. J.; Lyons M. A.; Dartois V.; Lenaerts A. J. Comparative Analysis of Pharmacodynamics in the C3HeB/FeJ Mouse Tuberculosis Model for DprE1 Inhibitors TBA-7371, PBTZ169, and OPC-167832. Antimicrob. Agents Chemother. 2021, 65, e00583-2110.1128/AAC.00583-21. - DOI - PMC - PubMed
    1. National Institute of Allergies and Infectious Diseases . Tuberculosis. https://www.niaid.nih.gov/diseases-conditions/tuberculosis-tb (accessed October 12, 2021).
    1. Lange C.; Dheda K.; Chesov D.; Mandalakas A. M.; Udwadia Z.; Horsburgh C. R. Management of Drug-Resistant Tuberculosis. Lancet 2019, 394, 953–966. 10.1016/s0140-6736(19)31882-3. - DOI - PMC - PubMed
    1. Hariguchi N.; Chen X.; Hayashi Y.; Kawano Y.; Fujiwara M.; Matsuba M.; Shimizu H.; Ohba Y.; Nakamura I.; Kitamoto R.; Shinohara T.; Uematsu Y.; Ishikawa S.; Itotani M.; Haraguchi Y.; Takemura I.; Matsumoto M. OPC-167832, a Novel Carbostyril Derivative with Potent Antituberculosis Activity as a DprE1 Inhibitor. Antimicrob. Agents Chemother. 2020, 64, e02020-1910.1128/AAC.02020-19. - DOI - PMC - PubMed
    2. Nakai Y.; Toda M.; Eto R.; Fujii T.. Methods for producing condensed heterocyclic compound and Intermediate of the same. JP 2020079206 A, November 12, 2018.
    3. Shimizu H.; Kawano Y.; Ishikawa S.; Uematsu Y.; Shinohara T.; Itotani M.; Haraguchi Y.; Takemura I.; Kaneshige A.; Nakai Y.; Hariguchi N.; Hayashi Y.; Matsumoto M.. Heterocyclic compounds and their use for the treatment of tuberculosis. WO 2016031255 A1, March 3, 2016.
    1. OPC-167832 Working Group for New TB Drugs. https://www.newtbdrugs.org/pipeline/compound/opc-167832 (accessed October 12, 2021).