Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2022 Jun;26(6):2670-2679.
doi: 10.1109/JBHI.2022.3156984. Epub 2022 Jun 3.

On the Automation of Radiomics-Based Identification and Characterization of NSCLC

On the Automation of Radiomics-Based Identification and Characterization of NSCLC

Eleonora D'Arnese et al. IEEE J Biomed Health Inform. 2022 Jun.

Abstract

Proper detection and accurate characterization of Non-Small Cell Lung Cancer (NSCLC) are an open challenge in the imaging field. Biomedical imaging is fundamental in lung cancer assessment and offers the possibility of calculating predictive biomarkers impacting patients' management. Within this context, radiomics, which consists of extracting quantitative features from digital images, shows encouraging results for clinical applications, but the sub-optimal standardization of the procedure and the lack of definitive results are still a concern in the field. For these reasons, this work proposes the design and development of LuCIFEx, a fully-automated pipeline for non-invasive in-vivo characterization of NSCLC, aiming to speed up the analysis process and enable an early diagnosis of the tumor.LuCIFEx pipeline relies on routinely acquired [18F]FDG-PET/CT images for the automatic segmentation of the cancer lesion, allowing the computation of accurate radiomic features, then employed for cancer characterization through Machine Learning algorithms. The proposed multi-stage segmentation process can identify the lesion with a mean accuracy of 94.2±5.0%. Finally, the proposed data analysis pipeline demonstrates the potential of PET/CT features for the automatic recognition of lung metastases and NSCLC histological subtypes, while highlighting the main current limitations of the radiomic approach.

PubMed Disclaimer

MeSH terms

LinkOut - more resources