Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2022 Mar 16;24(11):6552-6569.
doi: 10.1039/d1cp05033h.

Fabrication, thermal analysis, and heavy ion irradiation resistance of epoxy matrix nanocomposites loaded with silane-functionalized ceria nanoparticles

Affiliations

Fabrication, thermal analysis, and heavy ion irradiation resistance of epoxy matrix nanocomposites loaded with silane-functionalized ceria nanoparticles

Clare Davis-Wheeler Chin et al. Phys Chem Chem Phys. .

Abstract

This paper describes a detailed understanding of how nanofillers function as radiation barriers within the polymer matrix, and how their effectiveness is impacted by factors such as composition, size, loading, surface chemistry, and dispersion. We designed a comprehensive investigation of heavy ion irradiation resistance in epoxy matrix composites loaded with surface-modified ceria nanofillers, utilizing tandem computational and experimental methods to elucidate radiolytic damage processes and relate them to chemical and structural changes observed through thermal analysis, vibrational spectroscopy, and electron microscopy. A detailed mechanistic examination supported by FTIR spectroscopy data identified the bisphenol A moiety as a primary target for degradation reactions. Results of computational modeling by the Stopping Range of Ions in Matter (SRIM) Monte Carlo simulation were in good agreement with damage analysis from surface and cross-sectional SEM imaging. All metrics indicated that ceria nanofillers reduce the damage area in polymer nanocomposites, and that nanofiller loading and homogeneity of dispersion are key to effective damage prevention. The results of this study represent a significant pathway for engineered irradiation tolerance in a diverse array of polymer nanocomposite materials. Numerous areas of materials science can benefit from utilizing this facile and effective method to extend the reliability of polymer materials.

PubMed Disclaimer

LinkOut - more resources