Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2022 May;59(5):3091-3109.
doi: 10.1007/s12035-022-02728-3. Epub 2022 Mar 9.

Exercise Rehabilitation and/or Astragaloside Attenuate Amyloid-beta Pathology by Reversing BDNF/TrkB Signaling Deficits and Mitochondrial Dysfunction

Affiliations

Exercise Rehabilitation and/or Astragaloside Attenuate Amyloid-beta Pathology by Reversing BDNF/TrkB Signaling Deficits and Mitochondrial Dysfunction

Yu-Lin Wang et al. Mol Neurobiol. 2022 May.

Erratum in

Abstract

We aim to investigate the mechanisms underlying the beneficial effects of exercise rehabilitation (ER) and/or astragaloside (AST) in counteracting amyloid-beta (Aβ) pathology. Aβ oligomers were microinjected into the bilateral ventricles to induce Aβ neuropathology in rats. Neurobehavioral functions were evaluated. Cortical and hippocampal expressions of both BDNF/TrkB and cathepsin D were determined by the western blotting method. The rat primary cultured cortical neurons were incubated with BDNF and/or AST and ANA12 followed by exposure to aggregated Aβ for 24 h. In vivo results showed that ER and/or AST reversed neurobehavioral disorders, downregulation of cortical and hippocampal expression of both BDNF/TrkB and cathepsin D, neural pathology, Aβ accumulation, and altered microglial polarization caused by Aβ. In vitro studies also confirmed that topical application of BDNF and/or AST reversed the Aβ-induced cytotoxicity, apoptosis, mitochondrial distress, and synaptotoxicity and decreased expression of p-TrkB, p-Akt, p-GSK3β, and β-catenin in rat cortical neurons. The beneficial effects of combined ER (or BDNF) and AST therapy in vivo and in vitro were superior to ER (or BDNF) or AST alone. Furthermore, we observed that any gains from ER (or BDNF) and/or AST could be significantly eliminated by ANA-12, a potent BDNF/TrkB antagonist. These results indicate that whereas ER (or BDNF) and/or AST attenuate Aβ pathology by reversing BDNF/TrkB signaling deficits and mitochondrial dysfunction, combining these two potentiates each other's therapeutic effects. In particular, AST can be an alternative therapy to replace ER.

Keywords: Alzheimer’s disease; Amyloid-beta; Astragaloside; BDNF; Exercise rehabilitation; Mitochondrial dysfunction.

PubMed Disclaimer

References

    1. Choi SH, Bylykbashi E, Chatila ZK, Lee SW, Pulli B, Clemenson GD, Kim E, Rompala A, Oram MK, Asselin C, Aronson J, Zhang C, Miller SJ, Lesinski A, Chen JW, Kim DY, van Praag H, Spiegelman BM, Gage FH, Tanzi RE (2018) Combined adult neurogenesis and BDNF mimic exercise effects on cognition in an Alzheimer’s mouse model. Sci (N Y, NY) 361(6406):eaan8821. https://doi.org/10.1126/science.aan8821 - DOI
    1. Allen SJ, Watson JJ, Dawbarn D (2011) The neurotrophins and their role in Alzheimer’s disease. Curr Neuropharmacol 9(4):559–573. https://doi.org/10.2174/157015911798376190 - DOI - PubMed - PMC
    1. Chang CP, Liu YF, Lin HJ, Hsu CC, Cheng BC, Liu WP, Lin MT, Hsu SF, Chang LS, Lin KC (2016) Beneficial effect of astragaloside on Alzheimer’s disease condition using cultured primary cortical cells under β-amyloid exposure. Mol Neurobiol 53(10):7329–7340. https://doi.org/10.1007/s12035-015-9623-2 - DOI - PubMed
    1. Polat E, Bedir E, Perrone A, Piacente S, Alankus-Caliskan O (2010) Triterpenoid saponins from Astragalus wiedemannianus Fischer. Phytochemistry 71(5–6):658–662. https://doi.org/10.1016/j.phytochem.2009.11.013 - DOI - PubMed
    1. Li WZ, Wu WY, Huang DK, Yin YY, Kan HW, Wang X, Yao YY, Li WP (2012) Protective effects of astragalosides on dexamethasone and Aβ25-35 induced learning and memory impairments due to decrease amyloid precursor protein expression in 12-month male rats. Food chem toxicol : int j published British Ind Biol Res Assoc 50(6):1883–1890. https://doi.org/10.1016/j.fct.2012.03.064 - DOI

LinkOut - more resources