Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2022 Mar;603(7900):265-270.
doi: 10.1038/s41586-021-04377-3. Epub 2022 Mar 9.

Electron-catalysed molecular recognition

Affiliations

Electron-catalysed molecular recognition

Yang Jiao et al. Nature. 2022 Mar.

Abstract

Molecular recognition1-4 and supramolecular assembly5-8 cover a broad spectrum9-11 of non-covalently orchestrated phenomena between molecules. Catalysis12 of such processes, however, unlike that for the formation of covalent bonds, is limited to approaches13-16 that rely on sophisticated catalyst design. Here we establish a simple and versatile strategy to facilitate molecular recognition by extending electron catalysis17, which is widely applied18-21 in synthetic covalent chemistry, into the realm of supramolecular non-covalent chemistry. As a proof of principle, we show that the formation of a trisradical complex22 between a macrocyclic host and a dumbbell-shaped guest-a molecular recognition process that is kinetically forbidden under ambient conditions-can be accelerated substantially on the addition of catalytic amounts of a chemical electron source. It is, therefore, electrochemically possible to control23 the molecular recognition temporally and produce a nearly arbitrary molar ratio between the substrates and complexes ranging between zero and the equilibrium value. Such kinetically stable supramolecular systems24 are difficult to obtain precisely by other means. The use of the electron as a catalyst in molecular recognition will inspire chemists and biologists to explore strategies that can be used to fine-tune non-covalent events, control assembly at different length scales25-27 and ultimately create new forms of complex matter28-30.

PubMed Disclaimer

Comment in

References

    1. Lehn, J.-M. Supramolecular chemistry—Scope and perspectives. Molecules, supermolecules, and molecular devices (Nobel lecture). Angew. Chem. Int. Ed. Engl. 27, 89–112 (1988). - DOI
    1. Cram, D. J. The design of molecular hosts, guests, and their complexes (Nobel lecture). Angew. Chem. Int. Ed. Engl. 27, 1009–1020 (1988). - DOI
    1. Philp, D. & Stoddart, J. F. Self-assembly in natural and unnatural systems. Angew. Chem. Int. Ed. Engl. 35, 1154–1196 (1996). - DOI
    1. Persch, E., Dumele, O. & Diederich, F. Molecular recognition in chemical and biological systems. Angew. Chem. Int. Ed. 54, 3290–3327 (2015). - DOI
    1. Aida, T., Meijer, E. W. & Stupp, S. I. Functional supramolecular polymers. Science 335, 813–817 (2012). - DOI

Publication types

LinkOut - more resources