Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2022 May:99:154025.
doi: 10.1016/j.phymed.2022.154025. Epub 2022 Mar 1.

6-methoxyflavone suppresses neuroinflammation in lipopolysaccharide- stimulated microglia through the inhibition of TLR4/MyD88/p38 MAPK/NF-κB dependent pathways and the activation of HO-1/NQO-1 signaling

Affiliations

6-methoxyflavone suppresses neuroinflammation in lipopolysaccharide- stimulated microglia through the inhibition of TLR4/MyD88/p38 MAPK/NF-κB dependent pathways and the activation of HO-1/NQO-1 signaling

Wu-Fu Chen et al. Phytomedicine. 2022 May.

Abstract

Background: Microglia-related neuroinflammation is associated with a variety of neurodegenerative diseases. Flavonoids have demonstrated different pharmacological effects, such as antioxidation, neuroprotection and anti-inflammation However, the effect of flavonoid 6-methoxyflavone (6-MeOF) on microglia-mediated neuroinflammation remain unknown.

Purpose: The current study aim to study the antineuroinflammatory effects of 6-MeOF in lipopolysaccharide- (LPS-) induced microglia in vitro and in vivo.

Methods: Pretreatment of BV2 microglia cells with 6-MeOF for 1 h then stimulated with LPS (100 ng/ml) for 24 h. The expression levels of pro-inflammatory factors, NO and reactive oxygen species (ROS) were performed by the enzyme-linked immunosorbent assay (ELISA), Griess assay and flow cytometry. Western blotting was used to assess MAPK, NF-κB signal transducer and antioxidant enzymes-related proteins. Analysis of ROS and microglial morphology was confirmed in the zebrafish and mice brain, respectively.

Results: Our results demonstrated that 6-MeOF dose-dependently prevent cell death and decreased the levels of pro-inflammatory mediators in LPS-stimulated BV2 microglia cells. Phosphorylated NF-κB/IκB and TLR4/MyD88/p38 MAPK/JNK proteins after exposure to 6-MeOF was suppressed in LPS-activated BV-2 microglial cells. 6-MeOF also presented antioxidant activity by reduction of NO, ROS, iNOS and COX-2 and the induction of the level of HO-1 and NQO1 expressions in LPS-activated BV2 microglial cells. Furthermore, we demonstrated that 6-MeOF inhibited LPS-induced NO generation in an experimental zebrafish model and prevent the LPS-induced microgliosis in the prefrontal cortex and substantia nigra of mice.

Conclusion: These results explored that 6-MeOF possesses potential as anti-inflammatory and anti-oxidant agents against microglia-associated neuroinflammatory disorders.

Keywords: 6-methoxyflavone; Anti-neuroinflammatory; Anti-oxidant; LPS; Microglia.

PubMed Disclaimer

LinkOut - more resources