Hybrid Dirac semimetal-based photodetector with efficient low-energy photon harvesting
- PMID: 35273145
- PMCID: PMC8913679
- DOI: 10.1038/s41377-022-00741-8
Hybrid Dirac semimetal-based photodetector with efficient low-energy photon harvesting
Abstract
Despite the considerable effort, fast and highly sensitive photodetection is not widely available at the low-photon-energy range (~meV) of the electromagnetic spectrum, owing to the challenging light funneling into small active areas with efficient conversion into an electrical signal. Here, we provide an alternative strategy by efficiently integrating and manipulating at the nanoscale the optoelectronic properties of topological Dirac semimetal PtSe2 and its van der Waals heterostructures. Explicitly, we realize strong plasmonic antenna coupling to semimetal states near the skin-depth regime (λ/104), featuring colossal photoresponse by in-plane symmetry breaking. The observed spontaneous and polarization-sensitive photocurrent are correlated to strong coupling with the nonequilibrium states in PtSe2 Dirac semimetal, yielding efficient light absorption in the photon range below 1.24 meV with responsivity exceeding ∼0.2 A/W and noise-equivalent power (NEP) less than ~38 pW/Hz0.5, as well as superb ambient stability. Present results pave the way to efficient engineering of a topological semimetal for high-speed and low-energy photon harvesting in areas such as biomedical imaging, remote sensing or security applications.
© 2022. The Author(s).
Conflict of interest statement
The authors declare no competing interests.
Figures




Similar articles
-
Ultrasensitive and Self-Powered Terahertz Detection Driven by Nodal-Line Dirac Fermions and Van der Waals Architecture.Adv Sci (Weinh). 2021 Dec;8(23):e2102088. doi: 10.1002/advs.202102088. Epub 2021 Oct 19. Adv Sci (Weinh). 2021. PMID: 34668344 Free PMC article.
-
Ultrasensitive Self-Driven Terahertz Photodetectors Based on Low-Energy Type-II Dirac Fermions and Related Van der Waals Heterojunctions.Small. 2023 Jan;19(1):e2205329. doi: 10.1002/smll.202205329. Epub 2022 Nov 7. Small. 2023. PMID: 36344449
-
Colossal Terahertz Photoresponse at Room Temperature: A Signature of Type-II Dirac Fermiology.ACS Nano. 2021 Mar 23;15(3):5138-5146. doi: 10.1021/acsnano.0c10304. Epub 2021 Feb 23. ACS Nano. 2021. PMID: 33620212
-
Plasmonic antenna coupling to hyperbolic phonon-polaritons for sensitive and fast mid-infrared photodetection with graphene.Nat Commun. 2020 Sep 25;11(1):4872. doi: 10.1038/s41467-020-18544-z. Nat Commun. 2020. PMID: 32978380 Free PMC article.
-
Sensitive and Anisotropic Room-Temperature Terahertz Photodetection in Quasi-1D Nodal-Line Semimetal NbNiTe5.Small. 2025 Mar;21(12):e2410701. doi: 10.1002/smll.202410701. Epub 2025 Feb 17. Small. 2025. PMID: 39961065
Cited by
-
Self-Powered Sb2Te3/MoS2 Heterojunction Broadband Photodetector on Flexible Substrate from Visible to Near Infrared.Nanomaterials (Basel). 2023 Jun 29;13(13):1973. doi: 10.3390/nano13131973. Nanomaterials (Basel). 2023. PMID: 37446489 Free PMC article.
-
Tunable high-sensitivity sensing detector based on Bulk Dirac semimetal.RSC Adv. 2022 Nov 14;12(50):32583-32591. doi: 10.1039/d2ra05402g. eCollection 2022 Nov 9. RSC Adv. 2022. PMID: 36425681 Free PMC article.
-
Phase-controlled van der Waals growth of wafer-scale 2D MoTe2 layers for integrated high-sensitivity broadband infrared photodetection.Light Sci Appl. 2023 Jan 2;12(1):5. doi: 10.1038/s41377-022-01047-5. Light Sci Appl. 2023. PMID: 36588125 Free PMC article.
-
Graphene plasmons-enhanced terahertz response assisted by metallic gratings.Nanophotonics. 2022 Nov 4;11(21):4737-4745. doi: 10.1515/nanoph-2022-0455. eCollection 2022 Dec. Nanophotonics. 2022. PMID: 39634755 Free PMC article.
-
Monolayer Graphene Terahertz Detector Integrated with Artificial Microstructure.Sensors (Basel). 2023 Mar 17;23(6):3203. doi: 10.3390/s23063203. Sensors (Basel). 2023. PMID: 36991914 Free PMC article.
References
-
- Britnell L, et al. Field-effect tunneling transistor based on vertical graphene heterostructures. Science. 2012;335:947–950. - PubMed
-
- Liu Y, et al. Promises and prospects of two-dimensional transistors. Nature. 2021;591:43–53. - PubMed
-
- Akinwande D, Petrone N, Hone J. Two-dimensional flexible nanoelectronics. Nat. Commun. 2014;5:5678. - PubMed
-
- Bahramy MS, et al. Ubiquitous formation of bulk Dirac cones and topological surface states from a single orbital manifold in transition-metal dichalcogenides. Nat. Mater. 2018;17:21–28. - PubMed
-
- Noh HJ, et al. Experimental realization of type-II Dirac fermions in a PdTe2 superconductor. Phys. Rev. Lett. 2017;119:016401. - PubMed
Grants and funding
LinkOut - more resources
Full Text Sources