Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2022 May 1;32(3):231-238.
doi: 10.1097/MOU.0000000000000986. Epub 2022 Mar 11.

The role of novel imaging in prostate cancer focal therapy: treatment and follow-up

Affiliations
Review

The role of novel imaging in prostate cancer focal therapy: treatment and follow-up

Michael B Rothberg et al. Curr Opin Urol. .

Abstract

Purpose of review: Multiparametric magnetic resonance imaging (mpMRI) has fundamentally changed how intraprostatic lesions are visualized, serving as a highly sensitive means for detecting clinically significant prostate cancer (csPCa) via image-targeted biopsy. However, limitations associated with mpMRI have led to the development of new imaging technologies with the goal of better characterizing intraprostatic disease burden to more accurately guide treatment planning and surveillance for prostate cancer focal therapy. Herein, we review several novel imaging modalities with an emphasis on clinical data reported within the past two years.

Recent findings: 7T MRI, artificial intelligence applied to mpMRI, positron emission tomography combined with either computerized tomography or MRI, contrast-enhanced ultrasound, and micro-ultrasound are novel imaging modalities with the potential to further improve intraprostatic lesion localization for applications in focal therapy for prostate cancer. Many of these technologies have demonstrated equivalent or favorable diagnostic accuracy compared to contemporary mpMRI for identifying csPCa and some have even shown improved capabilities to define lesion borders, to provide volumetric estimates of lesions, and to assess the adequacy of focal ablation of planned treatment zones.

Summary: Novel imaging modalities with capabilities to better characterize intraprostatic lesions have the potential to improve accuracy in treatment planning, real-time assessment of the ablation zone, and posttreatment surveillance; however, many of these technologies require further validation to determine their clinical utility.

PubMed Disclaimer

References

    1. Loeb S, Bjurlin MA, Nicholson J, et al. Overdiagnosis and overtreatment of prostate cancer. Eur Urol 2014; 65:1046–1055.
    1. Ahmed HU, Brown LC, et al. E.-S.B.A. Diagnostic accuracy of multiparametric MRI and TRUS biopsy in prostate cancer (PROMIS): a paired validating confirmatory study. Lancet 2017; 389:815–822.
    1. Drost FJH, Osses DF, Nieboer D, et al. Prostate MRI, with or without MRI-targeted biopsy, and systematic biopsy for detecting prostate cancer. Cochrane Database Syst Rev 2019; 4:CD012663.
    1. Klotz L, Chin J, Black PC, et al. Comparison of multiparametric magnetic resonance imaging–targeted biopsy with systematic transrectal ultrasonography biopsy for biopsy-naive men at risk for prostate cancer: a phase 3 randomized clinical trial. JAMA Oncol 2021; 7:534–542.
    1. Rouvière O, Puech P, Renard-Penna R, et al. Use of prostate systematic and targeted biopsy on the basis of multiparametric MRI in biopsy-naive patients (MRI-FIRST): a prospective, multicentre, paired diagnostic study. Lancet Oncol 2019; 20:100–109.

Publication types