Immunization against severe acute respiratory syndrome Coronavirus 2: an overview
- PMID: 35283984
- PMCID: PMC8889804
- DOI: 10.4314/ahs.v21i4.11
Immunization against severe acute respiratory syndrome Coronavirus 2: an overview
Abstract
In the past years, numerous new fatal infections have emerged, including Ebola, Nipah, and Zika viruses, as well as coronaviruses. Recently, infections with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) have emerged in China, and were then transmitted all over the world, causing the coronavirus disease-19 (COVID-19) pandemic, which is transmitted at a higher rate than other diseases caused by coronaviruses. At the time of writing this review, COVID-19 is not contained in most countries in spite of quarantine, physical distancing, and enhanced hygiene measures. In this review, I address different methods for passive and active immunization against this virus, which is known to cause fatal respiratory disease, including natural passive immunization by breast milk, natural active immunization by herd immunization, artificial passive immunization by convalescent plasma or monoclonal antibodies, and artificial active immunization by vaccination. I hope this review will help design a prophylactic approach against outbreaks and pandemics of related coronaviruses in the future.
Keywords: Breastfeeding; COVID-19; SARS-CoV; herd immunity; monoclonal antibodies; vaccine.
© 2021 El-Masry EA.
References
-
- Woo PC, Lau SK, Lam CS, Lau CC, Tsang AK, Lau JH, et al. Discovery of seven novel mammalian and avian coronaviruses in the genus deltacoronavirus supports bat coronaviruses as the gene source of alphacoronavirus and betacoronavirus and avian coronaviruses as the gene source of gammacoronavirus and deltacoronavirus. J Virol. 2012;86(7):3995–4008. doi: 10.1128/JVI.06540-11. - DOI - PMC - PubMed
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources
Medical
Miscellaneous