One-Pot Synthesis of Strain-Release Reagents from Methyl Sulfones
- PMID: 35285232
- PMCID: PMC9041431
- DOI: 10.1021/jacs.2c00923
One-Pot Synthesis of Strain-Release Reagents from Methyl Sulfones
Abstract
Sulfone-substituted bicyclo[1.1.0]butanes and housanes have found widespread application in organic synthesis due to their bench stability and high reactivity in strain-releasing processes in the presence of nucleophiles or radical species. Despite their increasing utility, their preparation typically requires multiple steps in low overall yield. In this work, we report an expedient and general one-pot procedure for the synthesis of 1-sulfonylbicyclo[1.1.0]butanes from readily available methyl sulfones and inexpensive epichlorohydrin via the dialkylmagnesium-mediated formation of 3-sulfonylcyclobutanol intermediates. Furthermore, the process was extended to the formation of 1-sulfonylbicyclo[2.1.0]pentane (housane) analogues when 4-chloro-1,2-epoxybutane was used as the electrophile instead of epichlorohydrin. Both procedures could be applied on a gram scale with similar efficiency and are shown to be fully stereospecific in the case of housanes when an enantiopure epoxide was employed, leading to a streamlined access to highly valuable optically active strain-release reagents.
Conflict of interest statement
The authors declare no competing financial interest.
Figures





Similar articles
-
Expedient synthesis of spiro[3.3]heptan-1-ones via strain-relocating semipinacol rearrangements.Tetrahedron. 2023 Mar 21;134:133296. doi: 10.1016/j.tet.2023.133296. Epub 2023 Feb 2. Tetrahedron. 2023. PMID: 36937489 Free PMC article.
-
Ring-strain-enabled reaction discovery: new heterocycles from bicyclo[1.1.0]butanes.Acc Chem Res. 2015 Apr 21;48(4):1149-58. doi: 10.1021/ar500437h. Epub 2015 Mar 16. Acc Chem Res. 2015. PMID: 25775119
-
Rapid and Scalable Halosulfonylation of Strain-Release Reagents.Angew Chem Int Ed Engl. 2023 Jan 16;62(3):e202213508. doi: 10.1002/anie.202213508. Epub 2022 Nov 10. Angew Chem Int Ed Engl. 2023. PMID: 36226350 Free PMC article.
-
One-pot, three-component arylalkynyl sulfone synthesis.Org Lett. 2015 Feb 6;17(3):736-9. doi: 10.1021/acs.orglett.5b00015. Epub 2015 Jan 29. Org Lett. 2015. PMID: 25633719 Free PMC article.
-
The renaissance of strained 1-azabicyclo[1.1.0]butanes as useful reagents for the synthesis of functionalized azetidines.Org Biomol Chem. 2020 Aug 5;18(30):5798-5810. doi: 10.1039/d0ob01251c. Org Biomol Chem. 2020. PMID: 32687133 Review.
Cited by
-
Expedient synthesis of spiro[3.3]heptan-1-ones via strain-relocating semipinacol rearrangements.Tetrahedron. 2023 Mar 21;134:133296. doi: 10.1016/j.tet.2023.133296. Epub 2023 Feb 2. Tetrahedron. 2023. PMID: 36937489 Free PMC article.
-
A reagent to access methyl sulfones.Nat Commun. 2025 Jan 29;16(1):1132. doi: 10.1038/s41467-024-55027-x. Nat Commun. 2025. PMID: 39880857 Free PMC article.
-
Strain-release trifluoromethoxylation and pentafluorosulfanoxylation of [1.1.0]bicyclobutanes: expanded access to fluorinated cyclobutane hybrid bioisosteres.Chem Commun (Camb). 2025 Feb 13;61(15):3159-3162. doi: 10.1039/d4cc06616b. Chem Commun (Camb). 2025. PMID: 39869117
-
Bicyclobutanes: from curiosities to versatile reagents and covalent warheads.Chem Sci. 2022 Aug 25;13(40):11721-11737. doi: 10.1039/d2sc03948f. eCollection 2022 Oct 19. Chem Sci. 2022. PMID: 36320907 Free PMC article. Review.
-
Fast Cysteine Bioconjugation Chemistry.Chemistry. 2022 Nov 25;28(66):e202201843. doi: 10.1002/chem.202201843. Epub 2022 Sep 19. Chemistry. 2022. PMID: 35970770 Free PMC article.
References
-
- Liebman JF; Greenberg A A survey of strained organic molecules. Chem. Rev 1976, 76, 311–365.
- Wiberg KB The Concept of Strain in Organic Chemistry. Angew. Chem., Int. Ed. Engl 1986, 25, 312–322.
- Liebman JF; Greenberg A Survey of the heats of formation of three-membered-ring species. Chem. Rev 1989, 89, 1225–1246.
- Advances in Strain in Organic Chemistry; Halton B, Ed.; JAI Press: London, 1997.
- Dudev T; Lim C Ring Strain Energies from ab Initio Calculations. J. Am. Chem. Soc 1998, 120, 4450–4458.
- Advances in Strained and Interesting Organic Molecules; Halton B, Ed.; JAI Press: Stamford, CT, 2020.
- Khoury PR; Goddard JD; Tam W Ring strain energies: substituted rings, norbornanes, norbornenes and norbornadienes. Tetrahedron 2004, 60, 8103–8112.
- Bach RD; Dmitrenko O The Effect of Carbonyl Substitution on the Strain Energy of Small Ring Compounds and Their Six-Member Ring Reference Compounds. J. Am. Chem. Soc 2006, 128, 4598–4611. - PubMed
- Schneider TF; Kaschel J; Werz DB A New Golden Age for Donor–Acceptor Cyclopropanes. Angew. Chem., Int. Ed 2014, 53, 5504–5523. - PubMed
- Pirenne V; Muriel B; Waser J Catalytic Enantioselective Ring-Opening Reactions of Cyclopropanes. Chem. Rev 2021, 121, 227–263. - PubMed
-
-
For reviews on the synthesis and applications of strain-release reagents, see:
- Turkowska J; Durka J; Gryko D Strain release – an old tool for new transformations. Chem. Commun 2020, 56, 5718–5734. - PubMed
- Wiberg KB; Lampman GM; Ciula RP; Connor DS; Schertler P; Lavanish J Bicyclo[1.1.0]butane. Tetrahedron 1965, 21, 2749–2769.
- Hoz S Chapter 19 -Bicyclo[1.1.0]butane. In The Chemistry of the Cyclopropyl Group; Rappoport Z, Ed.; Wiley: New York, 1987; Vol. 1, pp 1121–1191. .
- Delia EW; Lochert IJ Synthesis of Biudgehead-Substituted Bicyclo[1.1.1]pentanes. A Review. Org. Prep. Proced. Int 1996, 28, 411–441.
- Bartnik R; Marchand AP Synthesis and Chemistry of Substituted 1-Azabicyclo[1.1.0]butanes. Synlett 1997, 1997, 1029–1039.
- Levin MD; Kaszynski P; Michl J Bicyclo[1.1.1]pentanes, [n]Staffanes, [1.1.1]Propellanes, and Tricyclo[2.1.0.02,5]pentanes. Chem. Rev 2000, 100, 169–234. - PubMed
- Ramazanov IR; Yaroslavova AV; Dzhemilev UM Russ. Chem. Rev 2012, 81, 700–728.
- Walczak MAA; Krainz T; Wipf P Ring-Strain-Enabled Reaction Discovery: New Heterocycles from Bicyclo[1.1.0]butanes. Acc. Chem. Res 2015, 48, 1149–1158. - PubMed
- Dilmaç AM; Spuling E; de Meijere A; Bräse S Propellanes—From a Chemical Curiosity to “Explosive” Materials and Natural Products. Angew. Chem., Int. Ed 2017, 56, 5684–5718. - PubMed
- Kanazawa J; Uchiyama M Recent Advances in the Synthetic Chemistry of Bicyclo[1.1.1]pentane. Synlett 2019, 30, 1–11.
- Ma X; Nhat Pham L Selected Topics in the Syntheses of Bicyclo[1.1.1]Pentane (BCP) Analogues. Asian J. Org. Chem 2020, 9, 8–22.
- Pramanik MMD; Qian H; Xiao W-J; Chen J-R Photoinduced strategies towards strained molecules. Org. Chem. Front 2020, 7, 2531–2537.
- Anderson JM; Measom ND; Murphy JA; Poole DL Bridge Functionalisation of Bicyclo[1.1.1]pentane Derivatives. Angew. Chem., Int. Ed 2021, 60, 24754–24769. - PMC - PubMed
-
-
-
For structural analyses of strain-release reagents, see:
- Suenram RD; Harmony MD Microwave Spectrum, Structure, and Dipole Moment of Bicyclo[2.1.0]pentane. J. Chem. Phys 1972, 56, 3837–3842.
- Irngartinger H; Lukas KL Bonding in Bicyclo[1.1.0]butane Derivatives. Angew. Chem., Int. Ed. Engl 1979, 18, 694–695.
- Gassman PG; Greenlee ML; Dixon DA; Richtsmeier S; Gougoutas JZ X-ray and theoretical analysis of the relationship between substituent steric effects and the structure of bicyclo[1.1.0]butane. The unexpected flexibility of the bicyclo[1.1.0]butane skeleton. J. Am. Chem. Soc 1983, 105, 5865–5874.
- Ioffe AI; Svyatkin VA; Nefedov OM Molecular-mechanical analysis of the structure of strained organic molecules. 6. [m.n.k]-Propellanes. Russ. Chem. Bull 1988, 37, 1827–1836.
- Saettel NJ; Wiest O Sterically Crowded Bicyclo[1.1.0]butane Radical Cations. J. Org. Chem 2003, 68, 4549–4552. - PubMed
- Polo V; Andres J; Silvi B New insights on the bridge carbon–carbon bond in propellanes: A theoretical study based on the analysis of the electron localization function. J. Comput. Chem 2007, 28, 857–864. - PubMed
- Sterling A; Smith R; Anderson E; Duarte F Beyond strain release: Delocalisation-enabled organic reactivity. ChemRxiv 2021, DOI: 10.26434/chemrxiv-2021-n0xm9-v2. - DOI - PMC - PubMed
-
-
- Lemal DM; Menger F; Clark GW Bicyclobutane. J. Am. Chem. Soc 1963, 85, 2529–2530.
- Srinivasan R A Simple Synthesis of Bicyclo[1.1.0]butane and its Relation to the Internal Conversion of Electronic Energy in 1,3-Butadiene. J. Am. Chem. Soc 1963, 85, 4045–4046.
- Frey HM; Stevens IDR Carbenoid Decomposition of Cyclopropanecarboxaldehyde Tosylhydrazone: Formation of Bicyclobutane. Proc. Chem. Soc. (London) 1964, 144.
- Bayless J; Friedman L; Smith JA; Cook FB; Shechter H Intramolecular Reactions of Cyclopropylcarbinyl, Cyclobutyl, and Allylcarbinyl Cationic Systems. J. Am. Chem. Soc 1965, 87, 661–663.
- Lampman GM; Aumiller JC Bicyclo[1.1.0]butane. Org. Synth 1971, 51, 55.
- Chang MH; Dougherty DA 2,3-Diazabicyclo-[2.1.1]hex-2-ene. Synthesis and thermal decomposition. J. Org. Chem 1981, 46, 4092–4093.
-
- Criegee R; Rimmelin A Darstellung und Eigenschaften von Bicyclo-[0.1.2]-Pentan. Chem. Ber 1957, 90, 414–417.
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources