Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2020 Aug 14;153(6):064108.
doi: 10.1063/5.0013634.

A computational exploration of aggregation-induced excitonic quenching mechanisms for perylene diimide chromophores

Affiliations

A computational exploration of aggregation-induced excitonic quenching mechanisms for perylene diimide chromophores

Nastaran Meftahi et al. J Chem Phys. .

Abstract

Perylene diimide (PDI) derivatives are widely used materials for luminescent solar concentrator (LSC) applications due to their attractive optical and electronic properties. In this work, we study aggregation-induced exciton quenching pathways in four PDI derivatives with increasing steric bulk, which were previously synthesized. We combine molecular dynamics and quantum chemical methods to simulate the aggregation behavior of chromophores at low concentration and compute their excited state properties. We found that PDIs with small steric bulk are prone to aggregate in a solid state matrix, while those with large steric volume displayed greater tendencies to isolate themselves. We find that for the aggregation class of PDI dimers, the optically accessible excitations are in close energetic proximity to triplet charge transfer (CT) states, thus facilitating inter-system crossing and reducing overall LSC performance. While direct singlet fission pathways appear endothermic, evidence is found for the facilitation of a singlet fission pathway via intermediate CT states. Conversely, the insulation class of PDI does not suffer from aggregation-induced photoluminescence quenching at the concentrations studied here and therefore display high photon output. These findings should aid in the choice of PDI derivatives for various solar applications and suggest further avenues for functionalization and study.

PubMed Disclaimer

LinkOut - more resources