Clinical utility of combinatorial pharmacogenomic testing in depression: A Canadian patient- and rater-blinded, randomized, controlled trial
- PMID: 35288545
- PMCID: PMC8921325
- DOI: 10.1038/s41398-022-01847-8
Clinical utility of combinatorial pharmacogenomic testing in depression: A Canadian patient- and rater-blinded, randomized, controlled trial
Erratum in
-
Correction: Clinical utility of combinatorial pharmacogenomic testing in depression: A Canadian patient- and rater-blinded, randomized, controlled trial.Transl Psychiatry. 2022 May 30;12(1):214. doi: 10.1038/s41398-022-01963-5. Transl Psychiatry. 2022. PMID: 35637185 Free PMC article. No abstract available.
Abstract
The pharmacological treatment of depression consists of stages of trial and error, with less than 40% of patients achieving remission during first medication trial. However, in a large, randomized-controlled trial (RCT) in the U.S. ("GUIDED"), significant improvements in response and remission rates were observed in patients who received treatment guided by combinatorial pharmacogenomic testing, compared to treatment-as-usual (TAU). Here we present results from the Canadian "GAPP-MDD" RCT. This 52-week, 3-arm, multi-center, participant- and rater-blinded RCT evaluated clinical outcomes among patients with depression whose treatment was guided by combinatorial pharmacogenomic testing compared to TAU. The primary outcome was symptom improvement (change in 17-item Hamilton Depression Rating Scale, HAM-D17) at week 8. Secondary outcomes included response (≥50% decrease in HAM-D17) and remission (HAM-D17 ≤ 7) at week 8. Numerically, patients in the guided-care arm had greater symptom improvement (27.6% versus 22.7%), response (30.3% versus 22.7%), and remission rates (15.7% versus 8.3%) compared to TAU, although these differences were not statistically significant. Given that the GAPP-MDD trial was ultimately underpowered to detect statistically significant differences in patient outcomes, it was assessed in parallel with the larger GUIDED RCT. We observed that relative improvements in response and remission rates were consistent between the GAPP-MDD (33.0% response, 89.0% remission) and GUIDED (31.0% response, 51.0% remission) trials. Together with GUIDED, the results from the GAPP-MDD trial indicate that combinatorial pharmacogenomic testing can be an effective tool to help guide depression treatment in the context of the Canadian healthcare setting (ClinicalTrials.gov NCT02466477).
© 2022. The Author(s).
Conflict of interest statement
AKT is a co-inventor on a patent for antipsychotic-induced weight gain at the time of this study (U.S. patent no. 10,662,475). CCZ had a patent on antipsychotic-induced weight gain markers at the time of this study. CAA had ownership/partnership in Splice Therapeutics at the time of this study, and also serves on the advisory board for AxoSim Inc. and the board of directors for ASENT. JAT, PED, PT, JL, MTK, and AG were employed by Myriad Neuroscience/Assurex Health at the time of this study. MTK and ESC were employed by Myriad Genetics at the time of this study. DJM was a co-inventor on two patents assessing risk for antipsychotic-induced weight gain at the time of this study and was also a co-investigator on two pharmacogenetic studies where genetic test kits were provided as in-kind contribution by Myriad Neuroscience but did not receive any salary, equity, stocks, or options from any pharmacogenetic companies. SK received research support from the University of Toronto, Department of Psychiatry Academic Scholar Award, the Labatt Family Innovation Fund in Brain Health, and the Canadian Institutes of Health Research (CIHR) at the time of this study, and received honorarium from Empowerpharm for past consultation. JMB and JET received funding and payment from Myriad Neuroscience to conduct the GAPP-MDD trial until the contract was terminated by Myriad Neuroscience. BMD was employed by Myriad Genetics at the time of this study and received salary and stock options. JLK is an unpaid member of the Myriad Neuroscience Scientific Advisory Board. All other authors declare no conflicts of interest.
Figures
References
-
- Hicks JK, Bishop JR, Sangkuhl K, Muller DJ, Ji Y, Leckband SG, et al. Clinical pharmacogenetics implementation consortium (CPIC) guideline for CYP2D6 and CYP2C19 genotypes and dosing of selective serotonin reuptake inhibitors. Clin Pharmacol Therapeutics. 2015;98:127–34. doi: 10.1002/cpt.147. - DOI - PMC - PubMed
-
- Hicks JK, Sangkuhl K, Swen JJ, Ellingrod VL, Muller DJ, Shimoda K, et al. Clinical pharmacogenetics implementation consortium guideline (CPIC) for CYP2D6 and CYP2C19 genotypes and dosing of tricyclic antidepressants: 2016 update. Clin Pharm Ther. 2017;102:37–44. doi: 10.1002/cpt.597. - DOI - PMC - PubMed
-
- KNNMP. Pharmacogenetics. 2021; https://www.knmp.nl/patientenzorg/medicatiebewaking/farmacogenetica/phar....
-
- U.S. Food & Drug Administration. Table of Pharmacogenomic Biomarkers in Drug Labeling. 2020; https://www.fda.gov/drugs/science-and-research-drugs/table-pharmacogenom....
Publication types
MeSH terms
Substances
Associated data
LinkOut - more resources
Full Text Sources
Medical
