Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2022 Apr;24(4):88-95.
doi: 10.1007/s11926-022-01063-9. Epub 2022 Mar 15.

Mitochondria in the Pathogenesis of Systemic Lupus Erythematosus

Affiliations
Review

Mitochondria in the Pathogenesis of Systemic Lupus Erythematosus

Ping-Min Chen et al. Curr Rheumatol Rep. 2022 Apr.

Abstract

Purpose of review: Systemic lupus erythematosus (SLE) is an autoimmune disease characterized by autoantibody production and inflammation in multiple organs. In this article, we present data on how various mitochondria pathologies are involved in the pathogenesis of the disease including the fact that they serve as a reservoir of autoantigens which contribute to the upending of lymphocyte tolerance.

Recent findings: Mitochondrial DNA from various cell sources, including neutrophil extracellular traps, platelets, and red blood cells, elicits the production of type I interferon which contributes to breaking of peripheral tolerance. Mitochondrial DNA also serves as autoantigen targeted by autoantibodies. Mutations of mitochondrial DNA triggered by reactive oxygen species induce T cell cross-reactivity against self-antigens. Selective gene polymorphisms that regulate mitochondrial apoptosis in autoreactive B and T cells represent another key aspect in the induction of autoimmunity. Various mitochondrial abnormalities, including changes in mitochondrial function, oxidative stress, genetic polymorphism, mitochondrial DNA mutations, and apoptosis pathways, are each linked to different aspects of lupus pathogenesis. However, whether targeting these mitochondrial pathologies can be used to harness autoimmunity remains to be explored.

Keywords: Lupus; Mitochondria; SLE.

PubMed Disclaimer

References

Papers of particular interest, published recently, have been highlighted as: • Of importance
    1. Abrahams JP, Leslie AG, Lutter R, Walker JE. Structure at 2.8 A resolution of F1-ATPase from bovine heart mitochondria. Nature. 1994;370(6491):621–8. https://doi.org/10.1038/370621a0 .
    1. Suen DF, Narendra DP, Tanaka A, Manfredi G, Youle RJ. Parkin overexpression selects against a deleterious mtDNA mutation in heteroplasmic cybrid cells. Proc Natl Acad Sci U S A. 2010;107(26):11835–40. https://doi.org/10.1073/pnas.0914569107 . - DOI - PubMed - PMC
    1. Tsokos GC. Systemic lupus erythematosus. N Engl J Med. 2011;365(22):2110–21. https://doi.org/10.1056/NEJMra1100359 . - DOI - PubMed
    1. Tsokos GC. Autoimmunity and organ damage in systemic lupus erythematosus. Nat Immunol. 2020;21(6):605–14. https://doi.org/10.1038/s41590-020-0677-6 . - DOI - PubMed - PMC
    1. Yurasov S, Wardemann H, Hammersen J, Tsuiji M, Meffre E, Pascual V, et al. Defective B cell tolerance checkpoints in systemic lupus erythematosus. J Exp Med. 2005;201(5):703–11. https://doi.org/10.1084/jem.20042251 . - DOI - PubMed - PMC

LinkOut - more resources