Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2022 Mar 11:84:e259259.
doi: 10.1590/1519-6984.259259. eCollection 2022.

A disease predictive model based on epidemiological factors for the management of bacterial leaf blight of rice

Affiliations
Free article

A disease predictive model based on epidemiological factors for the management of bacterial leaf blight of rice

H U Rehman et al. Braz J Biol. .
Free article

Abstract

Rice is a widely consumed staple food for a large part of the world's human population. Approximately 90% of the world's rice is grown in Asian continent and constitutes a staple food for 2.7 billion people worldwide. Bacterial leaf blight (BLB) caused by Xanthomonas oryzae pv. oryzae is one of the devastating diseases of rice. A field experiment was conducted during the year 2016 and 2017 to investigate the influence of different meteorological parameters on BLB development as well as the computation of a predictive model to forecast the disease well ahead of its appearance in the field. The seasonal dataset of disease incidence and environmental factors was used to assess five rice varieties/ cultivars (Basmati-2000, KSK-434, KSK-133, Super Basmati, and IRRI-9). The accumulated effect of two year environmental data; maximum and minimum temperature, relative humidity, wind speed, and rainfall, was studied and correlated with disease incidence. Average temperature (maximum & minimum) showed a negative significant correlation with BLB disease and all other variables; relative humidity, rainfall, and wind speed had a positive correlation with BLB disease development on individual varieties. Stepwise regression analysis was performed to indicate potentially useful predictor variables and to rule out incompetent parameters. Environmental data from the growing seasons of July to October 2016 and 2017 revealed that, with the exception of the lowest temperature, all environmental factors contributed to disease development throughout the cropping season. A disease prediction multiple regression model was developed based on two-year data (Y = 214.3-3.691 Max T-0.508 Min T + 0.767 RH + 2.521 RF + 5.740 WS), which explained 95% variability. This disease prediction model will not only help farmers in early detection and timely management of bacterial leaf blight disease of rice but may also help reduce input costs and improve product quality and quantity. The model will be both farmer and environmentally friendly.

PubMed Disclaimer

LinkOut - more resources