Mechanically reinforced biotubes for arterial replacement and arteriovenous grafting inspired by architectural engineering
- PMID: 35294246
- PMCID: PMC8926343
- DOI: 10.1126/sciadv.abl3888
Mechanically reinforced biotubes for arterial replacement and arteriovenous grafting inspired by architectural engineering
Abstract
There is a lack in clinically-suitable vascular grafts. Biotubes, prepared using in vivo tissue engineering, show potential for vascular regeneration. However, their mechanical strength is typically poor. Inspired by architectural design of steel fiber reinforcement of concrete for tunnel construction, poly(ε-caprolactone) (PCL) fiber skeletons (PSs) were fabricated by melt-spinning and heat treatment. The PSs were subcutaneously embedded to induce the assembly of host cells and extracellular matrix to obtain PS-reinforced biotubes (PBs). Heat-treated medium-fiber-angle PB (hMPB) demonstrated superior performance when evaluated by in vitro mechanical testing and following implantation in rat abdominal artery replacement models. hMPBs were further evaluated in canine peripheral arterial replacement and sheep arteriovenous graft models. Overall, hMPB demonstrated appropriate mechanics, puncture resistance, rapid hemostasis, vascular regeneration, and long-term patency, without incidence of luminal expansion or intimal hyperplasia. These optimized hMPB properties show promise as an alternatives to autologous vessels in clinical applications.
Figures







Similar articles
-
Functionalization of in vivo tissue-engineered living biotubes enhance patency and endothelization without the requirement of systemic anticoagulant administration.Bioact Mater. 2023 Mar 14;26:292-305. doi: 10.1016/j.bioactmat.2023.03.003. eCollection 2023 Aug. Bioact Mater. 2023. PMID: 36950151 Free PMC article.
-
Rapid remodeling observed at mid-term in-vivo study of a smart reinforced acellular vascular graft implanted on a rat model.J Biol Eng. 2023 Jan 3;17(1):1. doi: 10.1186/s13036-022-00313-9. J Biol Eng. 2023. PMID: 36597162 Free PMC article.
-
Development of long in vivo tissue-engineered "Biotube" vascular grafts.Biomaterials. 2018 Dec;185:232-239. doi: 10.1016/j.biomaterials.2018.09.032. Epub 2018 Sep 18. Biomaterials. 2018. PMID: 30248647
-
The Regulatory Effect of Braided Silk Fiber Skeletons with Differential Porosities on In Vivo Vascular Tissue Regeneration and Long-Term Patency.Research (Wash D C). 2022 Nov 11;2022:9825237. doi: 10.34133/2022/9825237. eCollection 2022. Research (Wash D C). 2022. PMID: 36474603 Free PMC article.
-
Considerations in the Development of Small-Diameter Vascular Graft as an Alternative for Bypass and Reconstructive Surgeries: A Review.Cardiovasc Eng Technol. 2020 Oct;11(5):495-521. doi: 10.1007/s13239-020-00482-y. Epub 2020 Aug 18. Cardiovasc Eng Technol. 2020. PMID: 32812139 Review.
Cited by
-
Sulfated oligosaccharide activates endothelial Notch for inducing macrophage-associated arteriogenesis to treat ischemic diseases.Proc Natl Acad Sci U S A. 2023 Nov 14;120(46):e2307480120. doi: 10.1073/pnas.2307480120. Epub 2023 Nov 9. Proc Natl Acad Sci U S A. 2023. PMID: 37943835 Free PMC article.
-
Prosthetic vascular grafts engineered to combat calcification: Progress and future directions.Biotechnol Bioeng. 2023 Apr;120(4):953-969. doi: 10.1002/bit.28316. Epub 2022 Dec 28. Biotechnol Bioeng. 2023. PMID: 36544433 Free PMC article. Review.
-
Fibrous wearable and implantable bioelectronics.Appl Phys Rev. 2023 Sep;10(3):031303. doi: 10.1063/5.0152744. Appl Phys Rev. 2023. PMID: 37576610 Free PMC article. Review.
-
Nanofibers with homogeneous heparin distribution and protracted release profile for vascular tissue engineering.Front Bioeng Biotechnol. 2023 Jun 22;11:1187914. doi: 10.3389/fbioe.2023.1187914. eCollection 2023. Front Bioeng Biotechnol. 2023. PMID: 37425354 Free PMC article.
-
Stem-Cell-Based Small-Diameter Blood Vessels with 3D Printing.Small Sci. 2024 Sep 10;4(11):2400261. doi: 10.1002/smsc.202400261. eCollection 2024 Nov. Small Sci. 2024. PMID: 40213445 Free PMC article.
References
-
- Dahl S. L., Kypson A. P., Lawson J. H., Blum J. L., Strader J. T., Li Y., Manson R. J., Tente W. E., DiBernardo L., Hensley M. T., Carter R., Williams T. P., Prichard H. L., Dey M. S., Begelman K. G., Niklason L. E., Readily available tissue-engineered vascular grafts. Sci. Transl. Med. 3, 68ra69 (2011). - PubMed
-
- Pektok E., Nottelet B., Tille J. C., Gurny R., Kalangos A., Moeller M., Walpoth B. H., Degradation and healing characteristics of small-diameter poly(epsilon-caprolactone) vascular grafts in the rat systemic arterial circulation. Circulation 118, 2563–2570 (2008). - PubMed
-
- von Bornstädt D., Wang H., Paulsen M. J., Goldstone A. B., Eskandari A., Thakore A., Stapleton L., Steele A. N., Truong V. N., Jaatinen K., Hironaka C., Woo Y. J., Rapid self-assembly of bioengineered cardiovascular bypass grafts from scaffold-stabilized, Tubular Bilevel Cell Sheets. Circulation 138, 2130–2144 (2018). - PMC - PubMed
LinkOut - more resources
Full Text Sources