Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2022 Jul;33(10):1324-1347.
doi: 10.1080/09205063.2022.2054398. Epub 2022 Mar 24.

Influence of extracellular cues of hydrogel biomaterials on stem cell fate

Affiliations
Review

Influence of extracellular cues of hydrogel biomaterials on stem cell fate

Haley Barnett et al. J Biomater Sci Polym Ed. 2022 Jul.

Abstract

Tissue engineering is a multidisciplinary field that focuses on creating functional tissue through the combination of biomimetic scaffolds, a cell source, and biochemical/physiochemical cues. Stem cells are often used as the cell source due to their multipotent properties and autologous sourcing; however, the combination of physical and chemical cues that regulate their behavior creates challenges in reproducibly directing them to a specific fate. Hydrogel biomaterials are widely explored as tissue scaffolds due to their innate biomimetic properties and tailorability. For these constructs to be successful, properties such as surface chemistry and spatial configuration, stiffness, and degradability of the biomaterial used for the scaffold framework should be analogous to the natural environment of the tissue they are repairing/replacing. This is imperative, as cues from the surrounding extracellular matrix (ECM) influence stem cell behavior and direct cell differentiation to a specific lineage. Hydrogels offer great promise as tools to control stem cell fate, as researchers can modulate the degradation rates, mechanical properties, swelling behavior, and chemical properties of the biomaterial scaffold to mimic the instructive cues of the native ECM. Discussion of the advantages and challenges of utilizing hydrogel biomaterials as the basis of tissue scaffolds is reviewed herein, as well as specific examples of hydrogels in tissue engineering and advances in hydrogel research to achieve desired cell phenotypes.

Keywords: Hydrogels; biodegradable polymers; extracellular cues; extracellular matrix; regenerative medicine; stem cells.

PubMed Disclaimer

Publication types

LinkOut - more resources