From a bistable adsorbate to a switchable interface: tetrachloropyrazine on Pt(111)
- PMID: 35302562
- PMCID: PMC8972298
- DOI: 10.1039/d1nr07763e
From a bistable adsorbate to a switchable interface: tetrachloropyrazine on Pt(111)
Abstract
Virtually all organic (opto)electronic devices rely on organic/inorganic interfaces with specific properties. These properties are, in turn, inextricably linked to the interface structure. Therefore, a change in structure can introduce a shift in function. If this change is reversible, it would allow constructing a switchable interface. We accomplish this with tetrachloropyrazine on Pt(111), which exhibits a double-well potential with a chemisorbed and a physisorbed minimum. These minima have significantly different adsorption geometries allowing the formation of switchable interface structures. Importantly, these structures facilitate different work function changes and coherent fractions (as would be obtained from X-ray standing wave measurements), which are ideal properties to read out the interface state. We perform surface structure search using a modified version of the SAMPLE approach and account for thermodynamic conditions using ab initio thermodynamics. This allows investigating millions of commensurate as well as higher-order commensurate interface structures. We identify three different classes of structures exhibiting different work function changes and coherent fractions. Using temperature and pressure as handles, we demonstrate the possibility of reversible switching between those different classes, creating a dynamic interface for potential applications in organic electronics.
Conflict of interest statement
The authors declare no competing interests.
Figures




Similar articles
-
Semi-conductive, Switchable Dielectric and Photoluminescent Properties of Two High-Temperature Phase Transition Hybrids.Chem Asian J. 2021 Nov 15;16(22):3664-3668. doi: 10.1002/asia.202100837. Epub 2021 Sep 27. Chem Asian J. 2021. PMID: 34519418
-
Planning Implications Related to Sterilization-Sensitive Science Investigations Associated with Mars Sample Return (MSR).Astrobiology. 2022 Jun;22(S1):S112-S164. doi: 10.1089/AST.2021.0113. Epub 2022 May 19. Astrobiology. 2022. PMID: 34904892
-
Nanoscale Studies of Organic Radicals: Surface, Interface, and Spinterface.Acc Chem Res. 2018 Mar 20;51(3):753-760. doi: 10.1021/acs.accounts.7b00612. Epub 2018 Feb 21. Acc Chem Res. 2018. PMID: 29465979
-
Functionalized Organic Thin Film Transistors for Biosensing.Acc Chem Res. 2019 Feb 19;52(2):277-287. doi: 10.1021/acs.accounts.8b00448. Epub 2019 Jan 8. Acc Chem Res. 2019. PMID: 30620566 Review.
-
The chemistry of the sulfur-gold interface: in search of a unified model.Acc Chem Res. 2012 Aug 21;45(8):1183-92. doi: 10.1021/ar200260p. Epub 2012 Mar 23. Acc Chem Res. 2012. PMID: 22444437 Review.
Cited by
-
Impact of Static Distortion Waves on Superlubricity.ACS Omega. 2023 Oct 31;8(45):42457-42466. doi: 10.1021/acsomega.3c05044. eCollection 2023 Nov 14. ACS Omega. 2023. PMID: 38024737 Free PMC article.
-
Machine learning and data-driven methods in computational surface and interface science.NPJ Comput Mater. 2025;11(1):196. doi: 10.1038/s41524-025-01691-6. Epub 2025 Jul 1. NPJ Comput Mater. 2025. PMID: 40613091 Free PMC article. Review.
References
-
- Slowinski K. Chamberlain R. V. Miller C. J. Majda M. J. Am. Chem. Soc. 1997;119:11910–11919. doi: 10.1021/ja971921l. - DOI
-
- Rivnay J. Inal S. Salleo A. Owens R. M. Berggren M. Malliaras G. G. Nat. Rev. Mater. 2018;3:1–14. doi: 10.1038/s41578-018-0013-z. - DOI
-
- Katz H. E. Huang J. Annu. Rev. Mater. Res. 2009;39:71–92. doi: 10.1146/annurev-matsci-082908-145433. - DOI
LinkOut - more resources
Full Text Sources