Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2022 Jul;34(29):e2200868.
doi: 10.1002/adma.202200868. Epub 2022 Jun 7.

Strain Engineering: A Boosting Strategy for Photocatalysis

Affiliations
Review

Strain Engineering: A Boosting Strategy for Photocatalysis

Yingxuan Miao et al. Adv Mater. 2022 Jul.

Abstract

Whilst the photocatalytic technique is considered to be one of the most significant routes to address the energy crisis and global environmental challenges, the solar-to-chemical conversion efficiency is still far from satisfying practical industrial requirements, which can be traced to the suboptimal bandgap and electronic structure of photocatalysts. Strain engineering is a universal scheme that can finely tailor the bandgap and electronic structure of materials, hence supplying a novel avenue to boost their photocatalytic performance. Accordingly, to explore promising directions for certain breakthroughs in strained photocatalysts, an overview on the recent advances of strain engineering from the basics of strain effect, creations of strained materials, as well as characterizations and simulations of strain level is provided. Besides, the potential applications of strain engineering in photocatalysis are summarized, and a vision for the future controllable-electronic-structure photocatalysts by strain engineering is also given. Finally, perspectives on the challenges for future strain-promoted photocatalysis are discussed, placing emphasis on the creation and decoupling of strain effect, and the modification of theoretical frameworks.

Keywords: d-band model; lattice strain; photocatalysis; strain engineering.

PubMed Disclaimer

References

    1. a) P. Strasser, S. Koh, T. Anniyev, J. Greeley, K. More, C. Yu, Z. Liu, S. Kaya, D. Nordlund, H. Ogasawara, M. F. Toney, A. Nilsson, Nat. Chem. 2010, 2, 454;
    1. b) X. Tian, X. Zhao, Y.-Q. Su, L. Wang, H. Wang, D. Dang, B. Chi, H. Liu, E. J. M. Hensen, X. W. D. Lou, B. Y. Xia, Science 2019, 366, 850.
    1. a) K. J. Choi, M. Biegalski, Y. L. Li, A. Sharan, J. Schubert, R. Uecker, P. Reiche, Y. B. Chen, X. Q. Pan, V. Gopalan, L.-Q. Chen, D. G. Schlom, C. B. Eom, Science 2004, 306, 1005;
    1. b) J. H. Haeni, P. Irvin, W. Chang, R. Uecker, P. Reiche, Y. L. Li, S. Choudhury, W. Tian, M. E. Hawley, B. Craigo, A. K. Tagantsev, X. Q. Pan, S. K. Streiffer, L. Q. Chen, S. W. Kirchoefer, J. Levy, D. G. Schlom, Nature 2004, 430, 758.
    1. B. Yan, J. Huang, L. Han, L. Gong, L. Li, J. N. Israelachvili, H. Zeng, ACS Nano 2017, 11, 11074.

LinkOut - more resources