Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2022 May:144:105366.
doi: 10.1016/j.compbiomed.2022.105366. Epub 2022 Mar 9.

A 65nm/0.448 mW EEG processor with parallel architecture SVM and lifting wavelet transform for high-performance and low-power epilepsy detection

Affiliations

A 65nm/0.448 mW EEG processor with parallel architecture SVM and lifting wavelet transform for high-performance and low-power epilepsy detection

Yongzhong Wen et al. Comput Biol Med. 2022 May.

Abstract

In recent years, low-power and wearable biomedical testing devices have emerged as a key answer to the challenges associated with epilepsy disorders, which are prone to crises and require prolonged monitoring. The feature vector of the electroencephalographic (EEG) signal was extracted using the lifting wavelet transform algorithm, and the hardware of the lifting wavelet transform module was optimized using the canonic signed digit (CSD) coding method. A low-power EEG feature extraction circuit with a power consumption of 0.42 mW was constructed. This article employs the support vector machine (SVM) technique after feature extraction to categorize and identify epilepsy. A parallel SVM processing unit was constructed to accelerate classification and identification, and then a high-speed, low-power EEG epilepsy detection processor was implemented. The processor design was completed using TSMC 65 nm technology. The chip size is 0.98 mm2, operating voltage is 1 V, operating frequency is 1 MHz, epilepsy detection latency is 0.91 s, power consumption is 0.448 mW, and energy efficiency of a single classification is 2.23 μJ/class. The CHB-MIT database test results show that this processor has a sensitivity of 91.86% and a false detection rate of 0.17/h. Compared to other processors, this processor is more suitable for portable/wearable devices.

Keywords: CSD code; EEG epilepsy Detection; Lifting wavelet transform; Support vector machine.

PubMed Disclaimer

Similar articles

Cited by

Publication types