Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2022 Jun;44(3):387-399.
doi: 10.1080/08923973.2022.2052892. Epub 2022 Mar 21.

Isorhamnetin alleviates lipopolysaccharide-induced acute lung injury by inhibiting mTOR signaling pathway

Affiliations

Isorhamnetin alleviates lipopolysaccharide-induced acute lung injury by inhibiting mTOR signaling pathway

Bo Yang et al. Immunopharmacol Immunotoxicol. 2022 Jun.

Abstract

Aim: Acute Lung Injury (ALI) is an acute hypoxic respiratory insufficiency caused by various traumatic factors, manifested as progressive hypoxemia and respiratory distress, and lung imaging shows a heterogeneous osmotic outbreak. Isorhamnetin (ISO) is a flavonoid compound isolated and purified from medicinal plants, such as Hippophae rhamnoides L. and Ginkgo, and has multiple pharmacological functions, such as anti-tumor, anti-myocardial hypoxia, and cardiovascular protection. Our previous study has shown that ISO could attenuate lipopolysaccharide (LPS)-induced acute lung injury in mice, but its mechanism is not clear.Methods: In this study, we used LPS-induced mouse and cell models to research the mechanism of ISO alleviating acute lung injury.Results: The results showed that ISO could attenuate the injury of type II alveolar epithelial cells by inhibiting the TLR4/NF-κB pathway. Further studies showed that ISO could inhibit the activation of mTOR signal in vivo and in vitro and promote autophagy in alveolar epithelial cells to reduce lung injury caused by LPS. In addition, ISO could inhibit LPS-induced epithelial cell apoptosis.Conclusion: Overall, ISO could suppress injury and apoptosis of epithelial cells and activate autophagy to protect epithelial cells via inhibiting mTOR signal and attenuating LPS-induced acute lung injury in mice.

Keywords: Isorhamnetin; acute lung injury; autophagy; lipopolysaccharide; mTOR signal.

PubMed Disclaimer

LinkOut - more resources